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Abstract. We discuss some open questions and results in the geometry
of computable Banach spaces.

1 Introduction

1.1 Banach Spaces

Recall that a normed vector space has associated with it a distance d(z,y) =
||z — yl|. If this is a complete metric space, it is called a Banach space. Banach
spaces are fundamental to the field of functional analysis, and have extensive
applications. The modern theory of computable Banach spaces likely began with
the work of Pour-El and Richards [PER83] who showed how the effective theory
gave insight into issues from classical physics. Brattka [Bral6] looked at the
effective content of basic results from the area including the Open Mapping
Theorem, the Closed Graph Theorem, and the Banach-Steinhaus Theorem, and
Brattka [Bral6] and earlier Metakides-Nerode-Shore [MNS85] and others studied
the important Hahn-Banach Theorem’s computable content.

In this paper we will highlight some recent work concerning the algorith-
mic content of work around the geometry of Banach spaces, specifically those
associated with bases, and decompositions.

We remark that the questions provide a fascinating “logician’s eye view” of
classical constructions, in that it seems that all of the classical constructions
are insufficient to answer some of the basic questions such as the complexity of
finding a Schauder basis.

* Dedicated to the memory of Barry Cooper. Research supported by the Marsden
Fund of New Zealand, and based on Downey’s Cooper Prize Lecture.



1.2 Computable Banach Spaces

Going back to Turing, the fundamental concept of computable analysis is that
of a computable real number r, which is one for which there is a computable
sequence of rationals (g;) such that |r — ¢;] < 27% That is, there is a com-
putable fast Cauchy sequence with limit r. Such a sequence is also known as
a Cauchy name of r. The reader unfamiliar with modern computable analysis,
might guess that a computable function on the reals is one effectively taking
computable reals to computable reals, and this was Turing’s [Tur36] intuition,
but the modern “type 2” definition of a computable function on the reals, is one
that acts effectively on all reals: it is a function f: R — R, induced by a com-
putable functional acting on fast Cauchy sequences, taking any Cauchy name of
a real r and producing a Cauchy name of f(r). Note that this definition means
that all computable functions on the reals must be continuous, and, indeed, g is
continuous iff it is computable relative to some oracle.

The notion of a computable metric space is a natural generalization of this
approach. This is a complete metric space (X,d), equipped with a sequence of
points (g;), dense in X, restricted to which the metric is computable: that is, the
reals d(g;, q;) are computable, uniformly given ¢ and j. Using the points (¢;) as
analogs of the rational numbers, we can similarly define Cauchy names of points
of X, and computable functions between computable metric spaces. Using this
notion of computability, we can now define:

Definition 1. A computable Banach space is a computable metric space equipped
with a compatible, computable normed vector space structure. That is, addition,
scalar multiplication, and the norm, are all computable functions.

1.3 Generalized computable Banach spaces

One of the guiding principles in the study of effective (computable) structure
theory is that most natural structures studied in classical mathematics have
natural computable presentations. Here “natural” is vaguely defined, but we
mean structures arising in, for example, applied mathematics or physics.

This is true for many Banach spaces. For example, Hilbert spaces have com-
putable representations. Other examples include the spaces ¢£ and ¢? for com-
putable p > 1 (R™ equipped with the p-norm, and the space of p-summable
infinite sequences of reals); more generally, LP({2) spaces for a variety of mea-
sure spaces §2; the space ¢y of infinite sequences of reals converging to 0; the
space C[0, 1] of continuous functions from the unit interval to R (equipped with
the supremum norm; here as analogs of the rational numbers we can take a
suitable sequence of polynomials). There are many other examples.

However, some very natural Banach spaces are missing from this list, starting
with the space £°° of bounded sequences of reals, equipped with the supremum
norm. The problem is that this space is not separable, so even the underlying
metric space cannot be given a computable structure, using the definition above.
In some sense this does point at a deficiency in the definition, in that £°° is surely



a “natural” space. Researchers in computable analysis have defined more gen-
eral representations of computable spaces (see Weihrauch [Wei00]). However, all
continuous representations are necessarily restricted to separable spaces. Indeed,
Brattka [Bral6, Prop. 15.3] observed that there is no representation of > pro-
viding the expected notion of computable points, and for which vector addition
is computable. Brattka proposed to omit the norm, and rather, concentrate on
convergence. He defined the notion of a general computable normed space, which
is a represented space in which the operation taking (names of) fast converging
Cauchy sequences to (a name of) the limit of the sequence, is a computable
function on names. The natural representation of > is a general computable
normed space.

The reason this notion is particularly interesting is that the theory of Banach
spaces is replete with results involving the dual space. If B is a computable and
hence separable Banach space, then its dual is not necessarily separable, but as
Brattka [Bral6] showed, it is always a general computable Banach space. The
non-computability of the dual space is a great impediment to the development of
theory of computable Banach spaces. It means that alternative methods must be
found to replace classical arguments using the dual, as we will see, for instance,
in the proof of Theorem 8.

We remark that sometimes, the dual space is computable, such as in the
finite dimensional case, and more generally, when the space has a well-behaved
basis. We will discuss bases in §3 below. We mention here that Brattka and
Dillhage [BD07] have a number of results when a space has a nice computable
basis (“shrinking” for instance; see [BD07, Cor. 5.9]). We believe that this area
is rife with interesting questions.

Question 1 Suppose that B is a computable Banach space. Under what circum-
stances is the dual of B computable? Suppose that X is a general computable
Banach space. Under what circumstances is it isomorphic to the dual of a com-
putable Banach space? More generally, develop the theory of general computable
Banach spaces.

We also remark that while the norm of a dual space may not be computable,
the dual of a computable Banach space has a natural representation in which the
norm of an element is (uniformly) left-c.e. in the name. This is because the unit
sphere of a computable Banach space is a computable closed (located) set. It
may be interesting to investigate this as an alternative or an added requirement
to general computable spaces.

2 Some classical effectivity results

Some of the best known results in computable Banach space theory are due
to Pour-El and Richards e.g. [PER83,PER89]. One of the classic results was to
effectivize the classical theorem that an operator on a Banach space is continuous
iff it is bounded.



Theorem 1 (Pour-El and Richards [PER83]). Let X,Y be computable Ba-
nach spaces, and (e;) be a computable sequence in X whose linear span is dense.
Let T : X — Y be a linear operator with closed graph whose domain contains
{e;} and such that the sequence (T'(e;)) is computable in' Y. Then T maps every
computable element of its domain onto a computable element of Y if and only if
T is bounded.

Theorem 1 has many applications. For example, it shows that the indefi-
nite integral of a computable function f € Cla,b] is computable. It also can
be used to give a proof of a Theorem of Myhill that there exists computable
functions in C[a, b] which have continuous derivatives, but whose derivatives are
not computable.

From the point of computable structure theory, being an analytic structure
defined via a computable dense sequence means that we can code up the struc-
tures via countable (computable) information, and hence the usual methods and
questions from computable structure theory (such as e.g. Ash-Knight [AKO00])
apply. Indeed, this is the thesis of a recent book [DMNar], which gives a unified
view of computable structure theory, both countable and analytic.

For example, now we can think of computable Banach spaces as c.e. sets
and hence associate indices to the structures. We can then look at, for example,
the complexity of isomorphism and classification. Whilst this is not the main
business of the present paper, we mention some recent results of this ilk.

As well as Banach spaces, computable metric spaces, computable locally
compact topological groups, and the like, have been investigated. For example,
Melnikov and Nies [MN13] showed that compact computable metric spaces could
be classified by a IT§ effective formula and all were A§ categorical, and hence were
relatively simple to classify logically, whereas Nies and Solecki [NS15] proved
that the characterisation problem for computable locally compact metric spaces
is IT{-complete, meaning that it is as hard as any isomorphism problem for
countable structures. Associated results are reported in the survey [DM20].

Various families of Banach spaces have been studied in this way. For example,
computable Lebesgue spaces have a II§ characterization ([BMM])), and C[0, 1]
also has an arithmetical characterization ([FHD*20]). The general classification
problem is hard.

Theorem 2 (Downey and Melnikov [DM23]). The isomorphism problem
for computable Banach spaces is X} -complete.

Proof. (sketch) The upper bound is X} since it is sufficient to state that there is
an isometry that works for special points, maps zero to zero, and is, furthermore,
surjective (these properties are closed). The well-known Mazur-Ulam theorem
asserts that every isometry with these properties has to be linear. Complete-
ness follows from the Xi-completeness for Boolean algebras, as follows. First,
uniformly produce the computably compact Stone space Bof a given Boolean
algebra B, and then consider C'(B;R) whose computable Banach space structure
can be produced uniformly effectively ([BHTM21]) from the compact presenta-
tion of the space. It is well-known that the homeomorphism type of the compact



domain determines the linear isomorphism type of the resulting space, and vice
versa (this is Banach-Stone duality). This gives the X{-completeness. o

We remark that Ferenczi, Louveau and Rosendal [FLR09] showed a similar
result in the context of Borel equivalence relations. Their construction is direct.

Question 2 (Melnikov) For each n, is there AY_ -categorical but not A9-
categorical Banach space? Same for Polish groups.

A somewhat related question concerns the (Anderson-)Kadets (Kadec) The-
orem [Kad66] which states that any two infinite dimensional separable Banach
spaces are homeomorphic as topological spaces, and hence homeomorphic to RY.
The result is also true for a more general class called Fréchet spaces.

Question 3 Is Kadets’ Theorem true effectively?

The published proofs all involve complex methods involving duality and the
effectivity is by no means clear.

3 The geometry of computable Banach spaces

We turn to the main concern of this paper. The theory of finite dimensional
vector spaces revolves around the notion of a basis, specifically a Hamel basis
where every element is a finite linear combination of basis elements. In Banach
spaces, the picture is again murky. If B is an infinite dimensional Banach space
then every Hamel basis must be uncountable. But spaces like ¢P are in some
sense coded by countable information. One of the main basis notions for Banach
spaces is the following.

Definition 2 (Schauder [Sch28]). Let X be a Banach space. A sequence
(x)ien € XN is a Schauder basis of X if for all x € X, there is a unique
sequence of coefficients (a;);en € RY such that

[eS)
E a;r; =X
=1

A sequence that is the Schauder basis of the closure of its linear span is called a
basic sequence.

We emphasise that a Schauder basis is a sequence so that order counts. The
standard unit vectors for P give a Schauder basis as is every orthonormal basis of
a Hilbert space. Haar [Haal0] gave a Schauder basis for LP(0,1) for 1 < p < co.

Note that every Banach space with a basis must be separable, and in his
famous book [Ban32], Banach asked if every separable Banach space has a
Schauder basis. There was a huge effort towards solving the basis problem. As
a part of the effort, many important properties regarding the geometry of Ba-
nach spaces were identified; especially those that were implied by the existence



of a Schauder basis. In this paper we will look at some of these concepts and
questions of effectivity concerning these geometric considerations.

It was only after 40 years that Banach’s question was solved by Per Enflo
[Enf73], and he did this by showing that there was a Banach space without some-
thing called the approximation property (Definition 6), which is a consequence of
having Schauder basis. In his PhD Thesis, Bosserhof proved that Enflo’s example
can be made computable.

Theorem 3 (Bosserhof [Bos08]). There is a computable copy of Enflo’s ex-
ample, and hence there is a computable Banach space without the approximation
property and hence without a Schauder basis.

Our fundamental question is the following:

Question 4 What is the complexity of having a basis? Specifically, what is the
complexity of the index set of computable Banach spaces that have a basis?

To establish an upper bound on this complexity, we need the following fun-
damental fact about Schauder bases.

Lemma 1 (Banach e.g. in [Ban32]). Let X be a Banach space and (z;)ien C
X a sequence of nonzero elements. Then (x;) is a basis of X if and only if:

1. There is a constant K € R such that for all n,m € N with m < n, for all
sequences of scalars (a;)icn, we have

m n
g a;T; g a;T;
i=1 i=1

2. The finite linear span of (x;)ien is dense in X.

<K

The proof of the harder direction of Lemma 1 consists of considering the
projections {S;};en associated with the basis (z;), defined by Sk (3o cviz;) =
Zf:o a;z;. Then (1) is equivalent to requiring the value sup; ||S;|| to be finite.
To show the lemma, define the alternate norm |[-||, on X by |32, cuzsl|, =
sup,, ||>-1 o a;@;||. Note that this is well-defined as (3°1  a;@i)n — Do 043,
so ||-||, is finite on any v € X. Furthermore, ||-||, is indeed a norm on X, and
lv]| < |lv||, for all v € X. In fact, it is not hard to show that (X, ||-||,) is complete
as well. An application of the open mapping theorem then proves that the norms
II-II, II-l, are equivalent. Lemma 1 leads to the following fundamental concept.

Definition 3. Let X be a Banach space and (x;)ien be a basis of X, and {S;}ien
its associated sequence of projections. The basis constant of (z;), denoted as
be (1)), is the value sup; ||S;||. Note that be((x;)) is equivalent to the infimum
of all K that satisfies the requirements of Lemma 1. The basis constant of the
space X, denoted be(X), is the infimum of basis constants across all of its bases.
We set be(X) = oo if X has no basis.



The reader unfamiliar with Banach spaces might think that, like Hilbert
spaces, there is always a Schauder basis with constant 1 if there is a basis. Such
a basis is called monotone. Unfortunately, Szarek [Sza83] showed that there is a
finite dimensional space which does not has a basis with basis constant 1, and
in fact, there are finite-dimensional spaces with arbitrarily large basis constant.
Recently, Ruofei Xie proved that Szarek’s [Sza87] construction can be made
effective.

Theorem 4 (Xie [Xie24]). For each k, for sufficiently large n, there is a com-
putable norm on R™ whose associated basis constant is greater than k.

For finite dimensional spaces things are somewhat nice:

Lemma 2 (Bosserhof [Bos08]). Let X be a computable Banach space, and
{zo,...,xn} be a computable sequence of independent points. Then be(xg, . .., xy)
is computable, uniformly in {xo,...,Tn}.

Proof. Let [z, ...,x,] denote the space spanned by the points. Since the basis
constant is the maximum of the norms of the associated projections, it suffices
to observe that given an operator on a finite-dimensional computable Banach
space, we can compute its norm. To do this, we use the fact that the unit ball of a
finite-dimensional Banach space is compact, and if the space is computable, then
the unit ball is computably compact. The maximum of a real-valued function on
a computably compact set is computable, uniformly. a

The following improves an earlier result of Bosserhof [Bos08] who observed
that basis constants of finite dimensional spaces are right c.e.

Lemma 3. Let X be a computable Banach space, and {xq,...,zn} be a com-
putable sequence of linearly independent points. Then be([xo, ..., Tyn]) is com-
putable. Furthermore, this is uniform in {xo,...,Zn}.

Note that here we are computing the basis constant of the space, not of the
particular basis.

Proof. Denote D = [xg,...,2,], and let (v;)i<, be an arbitrary sequence of
elements in D. By definition, we may write v; = Z?:o a; 4, so the sequence
(vi)i<n is uniquely characterised by the sequences of coefficients

Oéo,OaCVO,h e aao,na O[LO, ceey an,O» s 7an,n

Furthermore, as scalar scaling preserves the basis constant of (v;);<n, we can as-
sume without loss of generality that }3;_, 37 |ai j| = 1. Consider the natural

mapping f : (R, ||-[|;) — D" given by f ((as;)ij<n) = (Z;'l:o ai,jxj) - Un-

der this mapping, we can naturally regard each basis of D as an element in the

image. Therefore, the basis constant of D is equivalent to the minimum of basis
constants on f’s image. Now note that >3;_ 3" |ai ;| = 1 is an effectively
compact subset of (R™*™ ||-||;) and that f is a computable mapping. As with
maxima, the minimum of a real-valued computable function on a computably
compact set is computable. a



The proof of Lemma 1 combined with 3 shows that if I give you a computable
Schauder basis of a Banach space, then we can approximate the basis constant
via the sequence of finite dimensional projections, and hence have the following.

Lemma 4. Let X be a computable Banach space and (x;);en a computable basis
of X; then be((x;)) is a left-c.e. real.

This result has an easy converse.

Theorem 5. For any o € R that is left-c.e and o > 1, there is Banach space
X with basis (e;)ien such that be((e;)ien) = a.

Proof. In fact, we will show that it is sufficient to have X = ¢g. Let (e;);en denote
the standard basis, the idea is to replace blocks of {e;,e;+1} by {e; + €;r1,e; +
Bieit1}, where B; is some parameter in Q. And since be(e; + €41, €; + Bi€it1)
is simply a computable function continuous in g;, we can choose B; so that
be(e; + eit1, €; + Bieir1) = «;, where (;) is a computable sequence of rationals
increasing to «. Since the blocks are disjoint, the basis constants of the prefixes
of the modified basis will form the sequence {ag, a1,...}. O

It is also possible to use a coding argument to show that if a computable
Banach space X has a basis of Turing degree a then it has one of every degree
> a. Roughly speaking we can prove this by showing that a Schauder basis can
be replaced by one using the ideal points defining the underlying computable
metric space structure.

Question 5 Let X be a computable Banach space with basis. What is the
complexity of be(X)? What if X has a computable basis?

Theorem 6 (Bosserhof [Bos08]). There is a computable Banach space with
a Schauder basis, but no computable Schauder basis.

Question 6 Suppose that computable X has no computable Schauder basis but
does have a basis. What complexity basis does it have?

Question 7 (Bosserhof [Bos08]) Suppose that a computable Banach space X
has a monotone Schauder basis. Must X have a computable Schauder basis?

Bosserhof’s construction gives a computable presentation of a Banach space
with a basis and no computable one. It leaves open the question:

Question 8 Is there a computable Banach space X with a basis such that no
computable presentation of X has a computable basis? Is having a computable
basis presentation dependent amongst computable presentations?

Theorem 7 ([Qia21]). The index set of computable Banach spaces with com-
putable Schauder bases is X9-complete.



A theorem attributed to Mazur shows that every infinite dimensional Banach
space (separable or otherwise) has a an infinite dimensional subspace with a
Schauder basis. If we restrict ourselves to the linear structure, the computable
analogue of Mazur’s theorem fails: there is a computable, infinite-dimensional
vector space, all of whose computable independent subsets are finite (Metakides
and Nerode [MN77]). However, in the normed context, Mazur’s theorem has a
computable version.

Theorem 8. Let X be an infinite dimensional computable Banach space, then
there is a computable basic sequence in X.

The proof of this theorem (given in the appendix) relies on methods quite
distinct from the classical case, which heavily uses duality. Note that it leaves
the following question open.

Question 9 Suppose that X is a general computable infinite dimensional Ba-
nach space. Does X have an infinite basic sequence? More generally, how com-
plicated are the basic sequences in X7

Returning to the general basis question, the characterisation in terms of basis
constants shows that the index-set of computable Banach spaces with bases is
X1. Is this set X}-complete? We can prove IT9-hardness, but this leaves an
enormous gap.

One of the reasons this question is difficult, is that the known constructions
of spaces without bases do so by producing spaces without other properties, that
follow from having a basis, but are each weaker than having a basis. In most
cases, these properties are known to be arithmetical, and so these constructions
cannot be used to show X{-completeness of having a basis. In turn, the com-
plexity of having each of these properties is interesting in its own right, and in
most cases is still open. We mention three such properties here; for more details,
see [Qia21,JLO1].

Definition 4 (Schauder decomposition). Let X be a Banach space. A Schauder
decomposition (SD) of X is an infinite sequence (Z;)ien of closed subspaces of
X such that for all x € X, there exists an unique sequence (z;)ien, zi € Z; such

that
o0
i=1

A Schauder decomposition where the spaces Z; are all finite dimensional is called
a finite dimensional Schauder decomposition (FDD).

If a Banach space X has a Schauder basis (e;);cn, we can think of X being de-
composed into one-dimensional spaces of the form X = span(eg) ®span(e1)®. . ..
Schauder decompositions are then equivalent to requiring X to be decomposed
into closed subspaces in the form X = M, & My & M3 & ..., where the spaces
M; are no longer required to be one-dimensional. Finite dimensional Schauder
decompositions simply enforces the spaces {M;} to be finite dimensional. Szarek
[Sza87] proves these properties are strictly weaker than having a Schauder basis.



Definition 5 (Local basis structure). Let X be a Banach space. X is said
to have the local basis structure (LBS) if there is some constant K € R such
that for any finite dimensional subspace B C X, there exists a finite dimensional
space L C X such that B C L and be(L) < K.

X having the local basis structure means it can be approrimated by a se-
quence of finite dimensional subspaces, where each one of them have a “nice”
basis of low basis constant. It accords with the intuition that we can build a
Schauder basis by finite extension, in the same way we build a Hamel basis in
the finite dimensional case. It is not unreasonable to wonder if LBS in fact equiv-
alent to having a basis. Since it might seem that we can always build a basis
using LBS by inductively extending the current “basis elements” {by,...,b,} to
a bigger space E D span{by,...,b,} which still has a bounded basis constant.
However, the problem with this line of reasoning is that while we are guaranteed
be(E) < K for some universal constant K, this only means that some basis of F
has a low basis constant. It might be the case that no basis of F which extends
the current “candidate basis” {by,...,b,} has its basis constant bounded by K.
As it turns out, this is indeed the case as shown by the original construction
by Enflo in [Enf73], which has LBS yet lacks any basis. The locality of LBS
is the reason that the associated index set is 237 and indeed, this simplicity,
together with the techniques required for Theorem 4, gives us the only known
completeness result in this area:

Theorem 9 (Xie [Xie24]). The indezx-set of computable Banach spaces with
the local basis structure is X3 -complete.

Definition 6 (Approximation property).

1. Let X be a Banach space. X is said to have the approximation property
(AP) if for all compact sets K, for all e > 0, there is a finite rank operator
T on X such that (Vz € K) (||Txz — z|| < €).

2. Let X be a Banach space. X is said to have the bounded approximation prop-
erty (BAP) if there is a A > 1 such that for all compact sets K, for all e > 0,
there is a finite rank operator T on X such that (Vx € K) (||Tx — z|| < €) and
IT) < A

Szarek’s construction produces a space with the bounded approximation
property (and a finite-dimensional decomposition) but which does not have the
local basis structure.

For index-sets, we have the following bounds. For a property X, let X; denote
the index-set of computable Banach spaces with property X.

Theorem 10.

1. IT9 <BASIS; < X1.
2. Y < BAP; < X9.
3. 1§ < APy < ITj.

4. IIY < FDD; < X1.



5. 119 < SD; < X1.

The reader can see that there are many gaps in the classifications. The open
question is to close them.

We remark that there are many varieties of Schauder bases ([Meg98,Sin70,5in81]),
such as monotone, shrinking, absolute, etc, and their complexity is mostly open
(see [BDOT7]). There are also other notions of basis, such as Markushevich basis,
which seem completely unexplored from a computability-theoretical perspective.
For example, every separable Banach space has a Markushevich basis ([Mar43]
even a “strong” one Terenzi [Ter94])), but we have no idea of this result’s effec-
tive content. Hajek et. al. [HSVZO08] is a good reference.

References

[AKO00] Chris Ash and Julia Knight. Computable structures and the hyperarith-
metical hierarchy, volume 144 of Studies in Logic and the Foundations of
Mathematics. North-Holland Publishing Co., Amsterdam, 2000.

[Ban32]  Stefan Banach. Théorie des opérations lin’eaires. Z subwencji Funduszu
kultury narodowej, Warszawa, 1932.

[BDO7] Vasco Brattka and Ruth Dillhage. On computable compact operators on
computable banach spaces with bases. Mathematical Logic Quarterly, 53(4—
5)):345-364, 2007.

[BHTM21] Nikolay Bazhenov, Matthew Harrison-Trainor, and Alexander Melnikov.
Computable stone spaces, 2021.

[BMM] Tyler Brown, Tim McNicholl, and Alexander Melnikov. On the complexity
of classifying Lebesgue spaces. submitted.

[Bos08]  Volker Bosserhoff. Computable functional analysis and probabilistic com-
putability. Thesis, Universitit der Bundeswehr Miinchen, 2008.

[Bral6) Vasco Brattka. Computability of Banach Space Principles. FernUniversitét,
Hagen, 2016.

[Dav73]  A. M. Davie. The approximation problem for Banach spaces. Bulletin of
the London Mathematical Society, 5(3):261-266, 1973.

[DM20] Rodney Downey and Alexander Melnikov. Computable analysis and classi-
fication problems. In Beyond the horizon of computability, pages 100-111.
Springer-Verlag, 2020.

[DM23] Rodney Downey and Alexander Melnikov. Computably compact spaces.
Bulletin of Symbolic Logic, 29:170-263, 2023.

[DMNar] Rodney Downey, Alexander Melnikov, and Keng Meng Ng. Computable
Structure Theory: A Unified Approach. Springer-Verlag, to appear.

[Enf73] Per Enflo. A counterexample to the approximation problem in Banach
spaces. Acta Mathematica, 130:309-317, Jan 1973.

[FHD'20] Johanna Franklin, Rupert Holzl, Adam Day, Bakhadyr Khoussainov,
Alexander Melnikov, and Keng Meng Ng. Continuous functions and ef-
fective classification. 2020.

[FLR09] Valentin Ferenczi, Alain Louveau, and Christian Rosendal. The complexity
of classifying separable banach spaces up to isomorphism. J. Lond. Math.
Soc., 79(2):323-345, 2009.

[HaalO]  Alfred Haar. Zur theorie der orthogonalen funktionensysteme. Mathema-
tische Annalen, 69(3):331-371, Sep 1910.



[HSVZ08] Petr Hajek, Vincente Santaluc’/ia, Jon Vanderwerff, and Vévlav Zizler.

[JLO1]

[Kad66]

[Mar43]
[Meg98]
[MN77]

[MN13]

[MNS85]

[NS15]

[PERS3]

[PERSY)]
[Qia21]
[Sch2g]
[Sin70]
[Sin81]
[Szal3]

[Sza87]

[Ter94]

[Tur36]

[Wei00]

[Xie24]

Biorthogonal Systems in Banach Spaces. Springer-Verlag, 2008.

W. B Johnson and Joram Lindenstrauss. Handbook of the geometry of
Banach spaces. Volume 1 Volume 1. Elsevier, 2001.

Michail Kadets. Proof of the topological equivalence of all separable infi-
nite dimensional banach spaces. Funktsional’nyi Analiz i Ego Prilozheniy,
1(1):61-70, 1966.

A Markushevich. On a basis in the wide sense for linear spaces. Dokl. Akad.
Nauk., 41:241-244, 1943.

Robert Megginson. An Introduction to Banach Spaces. Springer-Verlag,
1998.

George Metakides and Anil Nerode. Recursively enumerable vector spaces.
Ann. Math. Logic, 11(2):147-171, 1977.

Alexander G. Melnikov and Andfe Nies. The classification problem for
compact computable metric spaces. In The nature of computation, pages
320-328. Springer-Verlag, 2013.

George Metakides, Anil Nerode, and Rchard Shore. Recursive limits on
the Hahn-Banach theorem. In Errett Bishop: reflections on him and his
research (San Diego, Calif., 1983), volume 39 of Contemp. Math., pages
85-91. Amer. Math. Soc., Providence, RI, 1985.

Andre Nies and Slawomir Solecki. Local compactness for computable pol-
ish metric spaces is II{-complete. In Ewvolving Computability - 11th Con-
ference on Computability in Europe, CiE 2015 Proceedings, pages 286—290.
Springer-Verlag, 2015.

Marian Pour-El and Ian Richards. Computability and noncomputability
in classical analysis. Transactions of the American Mathematical Society,
275(2):539-560, 1983.

Marian Pour-El and Ian Richards. Computability in analysis and physics.
Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1989.

Long Qian. Computability-theoretic complexity of effective Banach spaces.
Master’s thesis, Victoria University of Wellington, 2021.

Juliusz Schauder. Eine eigenschaft des haarschen orthogonalsystems. Math-
ematische Zeitschrift, 28:317-320, 1928.

Ivan Singer. Bases in Banach Spaces, I. Springer-Verlag, 1970.

Ivan Singer. Bases in Banach Spaces, II. Springer-Verlag, 1981.

Stanislaw J. Szarek. The finite dimensional basis problem with an appendix
on nets of Grassmann manifolds. Acta Mathematica, 151:153-179, Jan 1983.
Stanislaw J. Szarek. A Banach space without a basis which has the bounded
approximation property. Acta Mathematica, 159:81-98, Jan 1987.

P. Terenzi. Every separable banach space has a bounded strong norming
biorthogonal sequence which is also a steinitz basis. Studia Math., 111:207—
222, 1994.

Alan M. Turing. On computable numbers, with an application to the
entscheidungsproblem (with correction. 43(1937) 544-546. Proceedings of
the London Mathematical Society, 42:230-265, 1936.

Klaus Weihrauch. Computable analysis. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, Berlin, 2000. An introduction.
Ruofei Xie. Computability and Randomness. PhD thesis, Victoria University
of Wellington, 2024.



4 Appendix-Some Proofs

4.1 Proof of Theorem 8

To prove Theorem 8, we will first need the following classical lemma. This proof
is taken from [Qia21].

Lemma 5 (Mazur). Let X be an infinite dimensional Banach space, B C X be
a finite-dimensional subspace, and ¢ > 0. Then there is an x € X with ||z|| =1
so that

lyll < (L+€) [ly + Az|]

for ally € B,\ € R. In fact, x can be chosen so that this inequality is strict
whenever ||y|| , A # 0.

When working with separable Banach spaces, this lemma can be slightly
strengthened so that we only have to deal with the dense elements.

Lemma 6. In Lemma 5, further suppose that X is a separable Banach space
and that (¢;)ien s dense in the unit sphere of X. We can require the desired
x € X to be some element from (g;).

Proof. Let X be some separable Banach space, and let (¢;);en be dense in the
unit sphere of X. Let B C X be some finite-dimensional subspace and € > 0
be some pre-determined constant. Further denote z € X to be some element
that satisfies the requirements as given by Lemma 5 with ||z|| = 1. Note that by
homogeneity (y € B <= { € B) it is sufficient to find some z € (g;) which
satisfies

lyll < (L +€) [ly + =||

for all y € B. As ¢ ¢ B, we have that 6, = minyep ||z + y|| is both well-
defined and positive. Let z € X be any element where ||z|| = 1, since ||y + z|| <
Iy + 2l + [l — 2[|, we have

0a = min ly + 2| < 9: + [lz — |

From the inequality above, we can choose some z sufficiently close to x with
|lz]l =1 so that ||z — z|| < (1 + €)715,, we show that this choice works
Iyl <A+elly+all=0+elly+z—z+z
<@+ (ly+2ll +lla—z1) < A+ e) (ly + 2l + (1 +)710)
And by definition of §,, we get that
L+6) (ly+2ll+el+e70.) < L+ lly+ 2] +elly+ =]
=1 +2¢)fly+ =

Since Lemma 5 works for all values of €, the conclusion follows. In fact, the exact
same argument shows that we can always choose the desired x € X to be some
computable point when X is a computable Banach space. a



We are now ready to prove Theorem 8.

Proof (Proof of Theorem 8). In light of Lemmas 6 and 2, we can simply carry out
the classical construction. Fix some sequence of computable reals (e;);en such
that [T;2,(1+ ;) < oco. We will construct a basic sequence (u;);en inductively.
Having constructed ug, . . . , Uy, find some x in the effective dense sequence for X
such that be(ug, ..., up, ) < H?jol(l + ¢€;). The existence of such an element is
guaranteed by Lemma 6. Furthermore, this process is computable as the basis
constants are computable. a

4.2 Complexity of computable basis

Whilst we don’t have space to prove all of the claims in the paper, we will give
a brief skectch of how to prove X completeness of the index sets of computable
Banach spaces with computable bases. In doing so, we also sketch the ideas used
by Bosserhof [Bos08] as per [Qia21]. Below, let BASISc denote the index-set of
computable Banach spaces that have a computable Schauder basis.

Theorem 11. BASISc is X complete.

We first introduce the construction used in [Bos08]. Let Z denote the Ba-
nach space constructed in [Dav73] that lacks the approximation property. It was
proven in [Bos08] that this space is computable and also exhibits the local basis
property.

Theorem 12 ([Bos08]). There exists a computable Banach space without AP
but has LBS.

In particular, this implies that Z can be approximated by a sequence of
“nice” subspaces.

Theorem 13 ([Bos08]). There is a computable linearly independent sequence
(z1)ien C Z, a computable increasing function o : N — N and an universal
constant C' such that [xg,...] = Z and

(Vn € N)(be([zo, - -, To(ny]) < C)
We first need the following definitions.

Definition 7 ([Bos08]). For any n € N, Z,, is defined as:
Zn = [l'(), RN x(r(n)]

where (x;)ien is given by Theorem 13. For any 7 : N — N, the Banach space Y,
18 defined as:
Yo = (®iZrw)

which is the sequence space where norms of elements within each sequence tends
to 0, and the norm on the sequence is the supremum norm on the elements.

co



An important feature of this space is that it has a basis. Intuitively, as the
columns have universally bounded basis constants, we can simply “join up” the
bases of the columns in the larger space, and the resulting sequence will be a
basis.

Lemma 7 ([Bos08]). The space Y; as defined in Definition 7 has a basis for
any 7 : N — N.

The key idea is that Y, is a Banach space with basis, however each of its
components can be made arbitrarily “large” such that no computable sequence
can span it. For the sake of simplicity, also denote Y = (©;2 )CO. The following
lemma is crucial.

Lemma 8 ([Bos08]). For any basic sequence (y;)ieny € YN and n € N, we have

emb™(Z) € o, y1,- - .|

Where emb” : Z — Y is the map defined by
emb"(z) = (0,...,0,2,0,...) €Y

mapping x € Z to n-th position of a sequence that is otherwise entirely zero.
There is also a natural computability structure on the space Y, for certain
classes of 7.

Definition 8. A function 7 : N — N is lower semicomputable if there is a c.e
set A C N such that

7(n) =sup{k € N: (n, k) € A}
for alln € N.

Lemma 9 ([Bos08]). For any 7 : N — N that is lower semicomputable, the
constructed space Y. equipped with the dense set {emb’ (x)}i<q(+(j)),jen 5 @
computable Banach space.

Finally, to construct a computable Banach space without any computable
basis, it is sufficient to construct some lower semicomputable 7 such that Y. does
not contain any computable basis. Furthmore, by Lemma 8 and Theorem 13, we
can construct 7 by directly diagonalising against all computable basic sequences.
The following is due to [Bos08], although presented in a slightly different fashion.

Lemma 10 ([Bos08]). There is a lower semicomputable function 1) : N3 — N
such that for all n,k,i € N, if ¢, computes a basic sequence (y;)ieny € Y with
basis constant smaller than k, we have

emb (Zy i) € o, -]

Corollary 1 ([Bos08]). There exists a computable Banach space without com-
putable basis.



Proof. By Lemmas 9 and 10, define 7 : N — N by
T((n, k) = ¢(n, k, (n, k))

The resulting space Y, is a computable Banach space where 7({n,k)) is large
enough so that emb‘™* (Zr((n,ky)y) is not spanned by ¢,, (if it is a basic sequence

with basis constant smaller than k). This implies that the space Y; cannot be
spanned by any computable basic sequence®, and therefore lacks basis. a

It is worth noting that although the space constructed in Corollary 1 has no
computable basis, it is unclear how uncomputable the bases are.

Question 10 Let Y, be the space used in the proof of Corollary 1 that was
constructed by [Bos08]. What are the corresponding Turing degrees for the bases
in this space?

Using Lemma 1, it is easy to see that having a computable basis is X9, and
hence we need following lemma to show completeness.

Lemma 11. Recall the construction carried out in Lemma 7. If T is a com-
putable function, then Y, contains a computable basis.

Proof. As the basis constant of Z.(;) is uniformly bounded by some constant C,
there is some basis (a; ;) j<o(r(i)) With basis constant smaller than C' for each
Z(#)- It was proved in [Bos08] that the natural embedding of these bases into Y
(i.e. {emb'(a; ;)i € N,j < o(7(i))}) forms a basis for Y,. We will show that this
is actually computable when 7 is computable. If 7 is computable, the sequence

Loy L1y -+ Lo(r())

will be computable as well since (z;);cny and o are both computable. Therefore,
the rational span of the sequence will be computable as well. By continuity,
we can therefore effectively find some basis that lies in the rational span of
(xi)igc('r(i)) with basis constant smaller than C. As this procedure is uniform,
it gives a computable basis in Y. a

We are now ready to prove Theorem 11.

Proof (Proof of Theorem 11). BASISc € X5 essentially follows from Lemma 1,
it remains to show that BASIS¢ is X3 hard. It is a well known fact that for any
set A € X3, there is a computable function g : N> — N such that

r €A = (Jy)(Wy(z,y) is infinite )

For all x € N, we construct a lower semicomputable function h : N — N in
stages. Let {5} be some computable enumeration of the function 1 constructed
in Lemma 10. We also define the function C' : N — N, initially Cy(n) = n for
all n € N. C(n) indicates the computable sequence that is diagonalised against
at n. Initialise the construction by setting hs; = 0. At stage s, the following is
carried out for each n < s.

3 Note that any computable sequence in Y; is also a computable sequence in Y, so it
is sufficient to diagonalise against computable sequences in Y.



— If C(n) = —1, do nothing. Otherwise:

— Enumerate Wy, c(n)),s- If a new element is enumerated, set C'(k) to C(k—1)
for all & > n 4+ |[Wy(z,c(n)),s| and C(n + [Wy(z,c(n)),s|) to —1.

— View C(n) as a pair (a,b) and set hs(n) to max(hs_1(n),vs(a,b,n)).

Finally we define h as h = limg_,, hs. This is the end of the construction, we
now verify its validity.

Lemma 12. The function h constructed is indeed a lower semicomputable func-
tion.

Proof. The constructed sequence {h} is clearly a computable enumeration of h.
So it remains to verify that {hs} converges. For any n € N, we have C'(n) < n.
Therefore hy(n) < max, ) <n ¥(a,b,n) for all s, and since (hs(n))s is monotone,
this implies convergence. a

We now show that the constructed h has the desired properties.

Lemma 13. In addition to h being lower semicomputable, it also exihibit the
following properties

— Ifx € A, h is computable (although this might be non-uniform).
— Ifx ¢ A, Y}y, contains no computable basis.

Proof. Suppose x € A, thus there is some y such that Wy, c(,)) is infinite. By
the construction, this means that

-1=Cy+1)=Cly+2)=Cy+3)=...

Therefore, to compute h(k) for any k > y, we just have to run the computable
construction for finitely many steps until C'(k) = —1, in which case the current
value of h(k) will be its final value. And since there are only finite many values
h(k) for k <y, this can be computed non-uniformly. Hence, h is a computable
function.

Now suppose x ¢ A, in which case Wy, .y is finite for all y € N. We will show
that for all (a,b) € N, there is some n € N where C(n) = (a,b), implying that
h(n) > v(a,b,n) and therefore Y}, cannot contain any computable basis. At each
stage s of the construction, there will be some index i, where Cs(is) = (a,b).
So it suffices to show that (is)s eventually stabilises. But by the construction,
is can only increase when some new element has been enumerated in Wy, o))
for some C'(k) < (a,b). And since {k : C(k) < (a,b)} is finite, and each set of
the form Wy, ,y is finite as well, ¢; can only increase for a finite number of steps
until it eventually converges, and the proof is complete. a

Therefore, as the construction of A is uniform in z, we have established a
reduction from an arbitrary X5 set to BASIS¢, proving that BASIS¢ is indeed
X3 hard. O



