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Abstract—The reachability problem on directed graphs, asking whether two vertices are connected via a directed path, is an

elementary problem that has been well-studied. In this paper, we study a variation of the elementary reachability problem, called the

sink-reachability problem, which can be found in many applications such as static program analysis, social network analysis, large

scale web graph analysis, XML document link path analysis, and the study of gene regulation relationships. To scale sink-reachablity

analysis to large graphs, we develop a highly scalable sink-reachability preserving graph reduction strategy for input sink graphs, by

using a composition framework. That is, individual sink-reachability preserving condensation operators, each running in linear time,

are pipelined together to produce graph reduction algorithms that result in close to maximum reduction, while keeping the

computation efficient. Experiments on large real-world sink graphs demonstrate the efficiency and effectiveness of our compositional

approach to sink-reachability preserving graph reduction with a reduction rate of up to 99.74 percent for vertices and a rate of up to

99.46 percent for edges.

Index Terms—Sink reachability, graph reduction, modular decomposition, dominator

Ç

1 INTRODUCTION

THE basic reachability problem, asking whether two verti-
ces u and v are connected via a directed path in a

directed graph G ¼ ðV;EÞ, is a long-standing, well-studied
problem [1]. One naı̈ve approach is to pre-compute and
store the full transitive closure of edges, which allows con-
stant-time query processing. However, this approach
requires quadratic worst-case space complexity, making it
infeasible for large graphs. Another naı̈ve approach is to
online conduct a depth-first search (DFS) or breadth-first
search (BFS), emanating from vertex u aiming to find vertex
v, for verifying the reachability. However, the search
approach exhibits a worst-case time complexity of OðjV j þ
jEjÞ for a single reachability query, which is inefficient for
online query processing over large graphs. To overcome the
complexity issues of the naı̈ve approaches, indexing meth-
ods were introduced that perform a pre-processing step of
the input graph. In the pre-processing step, a compact index
structure is produced permitting fast access to the reachabil-
ity information. Although many reachability indexing
methods have been proposed, according to Jin et al. [2] most
of the existing methods with index structures reach a scal-
ability bottleneck for graphs with around one million

vertices/edges. Graphs with millions of nodes and billions
of edges have now become commonplace, e.g., social net-
works, web graphs, XML link graphs. To overcome the
aforementioned scalability bottleneck, new methods have
been developed that reduce the input graphs. By reducing/
condensing the input graphs, indexing methods still con-
tinue to scale for larger graphs [1]. The aim of the reduction
strategy is to produce a substantially smaller graph while
preserving the reachability information of the input graph.
We call such a strategy reachability-preserving graph reduction.

In this paper, we study the problem of sink reachability,
a variation of the elementary graph reachability problem.
The sink-reachability problem takes as an input a sink graph
G ¼ ðV; S; EÞ. In G, the set of vertices is divided into sink
vertices S and non-sink vertices V assuming that the two
vertex sets are disjoint (i.e., V \ S ¼ ;).1 The sink-reachabil-
ity problem seeks for the sink-reachability function r : V ! 2S

that captures, which sinks are reachable from a non-sink
vertex in the sink graph.

Our notion of sink reachability may be seen as a refine-
ment of the reachability relation, to answer particular
queries more efficiently than in the general construction. It
can be applied to the analysis of ID/IDREF, XLink links and
entity references in XML documents, social networks, and
large scale web graphs. For example, resource access con-
trols on social networks may be modelled via sink reachabil-
ity [3]. By treating resources as sink nodes and access rules
as edges, rðuÞ gives all resources accessible by a user u,
while a reversal of edges obtains all users which may access
a resource. Similarly, friend relationships between users can
be represented as nodes and edges respectively, with sinks
being used to model social media “influencers”. The analy-
sis of influencers is of high value for brand management,
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1. Note that, we assume that any successors/out-neighbors of sink
vertices s 2 S are also contained in S, i.e.,NþðsÞ \ V ¼ ;.
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e-commerce, and social media marketing [3]. In the Seman-
tic Web, graphs are found in the ID/IDREF links in XML
documents or directly as RDF data. Efficiently performing
various types of reachability query on such graph struc-
tured data is a topic of substantial investigation in the litera-
ture [4], [5], [6], [7]. Our notion of sink reachability is
applicable to efficiently compute a range of queries in this
domain.

A sink reachability problem arises when parsing struc-
tured data. Many expressive data formats have some notion
of reference in order to avoid data redundancies. For
instance, XML supports such references in the form of entity
references. Those references can then be used by attackers to
create malicious input that causes parsers to run out of time
and/or memory as they have to evaluate an exponential
number of paths, typically always resolving references to
the same values via redundant paths. The classical vulnera-
bility of this kind is CVE-2003-1564, better known as billion
laughs. Similar attacks can be grafted for other data formats
[8], [9]. The construction of the sink graph modelling rela-
tionships between references and values (with values being
the sinks), and the use of effective algorithms to resolve
references via sink reachability is a possible approach to
avoid such attacks.

In biology, transcriptional regulatory networks model
relationships between genes as directed graphs. Nodes that
are connected by an edge model where one gene regulates
the activity of another. Efficiently answering reachability
queries of such networks gives key insights into transitive
regulatory relationships [10]. Sink reachability problem
may be readily applied here also, to speed up queries
involving designated subsets of genes, and those that are
regulated by or regulate them.

Besides asking rðuÞ for a query vertex u, another typical
sink-reachability query might ask whether two non-sink
vertices u and v share at least one sink vertex, i.e., whether
rðuÞ \ rðvÞ 6¼ ;. Reachability queries of this particular type
find applications in static program analysis (in particular
points-to analysis) [11], [12], [13], [14], in analysis of percola-
tion patterns in large real-world networks [15], and in logis-
tics applications [16]. For instance, consider the problem of
points-to analysis [13] that uses a graph model to identify
which program variables may point to which objects. In this
graph model, the vertices represent program variables, sink
vertices represent objects, and edges represent assignments.
Sink-reachability is able to answer queries such as alias, i.e.,
two variables share at least one common sink vertex/object.
This variation of the sink reachability problem has near-
cubic running time,2 although algorithms with a sub-cubic
worst-case time complexity exists [17], [18], they are not
very practical nor efficient in practice. We note that the
sink-reachability query asking whether rðuÞ \ rðvÞ 6¼ ;
can be answered by existing elementary reachability
query processing techniques as follows: Given a sink graph
G ¼ ðV; S; EÞ, we create its reverse graph G

 ¼ ðV 0; S0; E Þ,
where every vertex v 2 V has a copy v0 2 V 0 and every ver-
tex s 2 S has a copy s0 2 S0. Then, we concatenate G and G

 
,

denoted G� G
 
, by adding a directed edge ðs; s0Þ for every

s 2 S. It is easy to verify that rðuÞ \ rðvÞ 6¼ ; if and only if u
can reach v0 in G� G

 
. Thus, all existing techniques for the

elementary reachability problem can be applied here. In
particular, the reachability preserving reduction techniques
proposed in [1] can be applied to reduce the graph. How-
ever, this is not necessarily effective as it ignores the special
properties of the sink-reachability function.

In this work, we introduce a highly scalable sink-reach-
ability preserving graph reduction strategy to scale the sink-
rechability problem to large graphs. The reduction strategy
uses a composition framework consisting of condensation
operators. We first design four sink-reachability preserving
condensation operators: strongly connected component
condensation (operator S), condensation via dominators
(operator D), and condensation via two special cases of
module (operators Mi and Mc). We devise algorithms to
perform each condensation operator in linear time. We
also investigate the properties of these four condensation
operators, and how to compose them by noting that each
condensation operator maps sink graphs to sink graphs.
Specifically, we prove the existence of a unique fixpoint.

Theorem 1. Given any sink graph G, all maximal condensa-
tion sequences over fS;D;Mi;McÞ reduce G to the same
sink graph, where maximal means further applying any
operator on the resulting sink graph has no effect.

As each of our four condensation operators runs in linear
time, the running time of a condensation sequence grows
linearly to its length. Based on the fixpoint theorem, we pro-
pose maximal condensation sequences that are at most
3 times longer than the shortest condensation sequence, for
any given sink graph G.

The main contributions of this work are as follows:

� As far as we know, we are the first to study the sink-
reachability preserving graph reduction problem.

� We introduce four condensation operators, and pres-
ent algorithms to conduct each operator in linear
time. (Section 4.1)

� We state a fixpoint theorem for composing the con-
densation operators, showing that any sequence of
operators leads to a unique fixpoint, i.e., applying a
maximum sequence will result in the same reduced
graph. (Section 4.2)

We conduct extensive experiments with large-scale
graphs from static program analysis, social networks and
web graphs from SNAP. Experiments on large real-world
sink graphs demonstrate the efficiency and effectiveness of
our composition framework. We can show compression
rate of up to 99.74 percent for vertices and a compression
rate of up to 99.46 percent for edges.

2 RELATED WORK

A classic reachability problem asks, whether two vertices u
and v are connected via a direct path in a graph G ¼ ðV;EÞ.
Many reachability indexing methods have been proposed
for a classic reachability problem. According to Jin et al. [2]
most of the existing methods reach a scalability bottleneck
around one million vertices/edges. In further support of
this view, Yildirim et al. [19] have shown that very large

2. We refer here to the computation of transitive closure for a
directed graph, which is equivalent to matrix multiplication.
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graphs are not supported by the vast majority of indexing
methods. Veloso et al. [20] claim to have found that the only
indexing methods that can handle graphs with more than
100,000 edges are Nuutila’s INTERVAL [21], [22], GRAIL
[19], FERRARI [23], TF-Label [24] and their own FELINE
[20] indexing method.

Reduction strategies, where the aim is to produce a sub-
stantially smaller graph while preserving the original graph
reachability properties, have recently been proposed in two
studies pertaining to the classic reachability problem. In
[25], Fan et al. present a reachability preserving equivalence
reduction, where two vertices u and v are equivalent in a
DAG G if and only if they have the same set of ancestors
and the same set of descendants. The result of this reach-
ability preserving reduction over a graph G is a smaller
graph Gr obtained by replacing each set of equivalent verti-
ces in G with a representative vertex in Gr. On a set of ten
real-world graphs with jV j ranging between 6K and 2:4M
and jEj ranging between 21K and 5:0M, an average com-
pression factor of 95 percent is achieved. However, the algo-
rithm in [25] has both high time complexity OðjV jðjV j
þjEjÞÞ and high space complexity OðjV j2Þ. Zhou et al. [26]
recently speed up the reduction process by first computing
a transitive reduction followed by an equivalence reduction.
The transitive reduction removes from G all redundant
edges to get the unique smallest DAG Gt satisfying that Gt

has the same transitive closure as that of G. Although this
transitive reduction still has OðjV j3Þ time complexity in the
worst case, in [26] heuristics are employed that work well
in practice to efficiently compute Gt on real-world exam-
ples. Given Gt as input, an equivalence reduction comput-
ing Gr, as in [25], can be achieved in time OðjV j þ jEtjÞ and
space OðjV jÞ. It is shown in [26] that this combined strategy
can be scaled to large real-world graphs.

The sink reachability problem that we formally define in
this paper has mainly, so far, found applications in static pro-
gram analysis, in particular points-to analysis [11], [13], [14]
expressed as logic programs. The use of dominators as an ad-
hoc reduction technique for points-to analysis was proposed
in [12]. Dominators have also been employed as a reduction
strategy in the context of instrumentation of code coverage
testing in [27]. However, they were not stated as a generic
graph reduction operator aswe do in this paper, and our algo-
rithm for dominator-based condensation is different.

Computing the modular decomposition of a directed
graph is an active area of research. The current best time
bound, OðjV j þ jEjÞ is achieved by the algorithm of McCon-
nell and Montgolfier [28]. However, the existing algorithms
are of theoretical interests only, and no implementation exists.
In addition, the notion of module that we formally define in
this paper, which considers only successors, rather than all
neighbours, doesn’t appear in the literature. We opt to utilise
a simple, fast algorithm that requires repeated application to
achieve a modular decomposition of an input graph G into
maximum successor modules, allowing for trade-off between
maximum reduction and computational efficiency.

3 PRELIMINARY

We use G ¼ ðV;EÞ to denote a directed graph consisting of a
set V of vertices and a setE of edges. A directed edge from u 2

V to v 2 V is denoted by ðu; vÞ. For a vertex u, its set of out-
neighbors is denoted by NþðuÞ ¼ fv 2 V j ðu; vÞ 2 Eg, and its
set of in-neighbors is denoted by N�ðuÞ ¼ fv 2 V j ðv; uÞ 2
Eg. The out-degree and in-degree of u are denoted by dþðuÞ ¼
jNþðuÞj and d�ðuÞ ¼ jN�ðuÞj, respectively. A path in G from
vertex u 2 V to vertex v 2 V is a sequence of vertices
ðvi1 ; vi2 ; . . . ; vilÞ such that u ¼ vi1 ; v ¼ vil , and ðvij ; vijþ1Þ 2 E
for all 1 � j < l. We say that u can reach v in G, denoted
uˆ Gv, if there is a path inG from u to v.

In this paper, we study sink graph, a special type of
directed graph, and focus on the sink-reachability.

Definition 1. A sink graph, denoted ðV; S; EÞ, is a directed
graph ðV [ S;EÞ where the set of vertices is partitioned into
two disjoint subsets V (normal vertices) and S (sink vertices)
such that there is no edge in G from S to V , i.e., NþðsÞ\
V ¼ ;; 8s 2 S.

Definition 2. Given a sink graph G ¼ ðV; S; EÞ, the sink-
reachability of a vertex u 2 V is the set of sink vertices that u
can reach, denoted rGðuÞ ¼ fs 2 S juˆ Gsg.
For example, Fig. 1 shows a sink graph with V ¼

fv1; . . . ; v12g and S ¼ fs1; s2; s3g. The sink-reachability of
v1 is rGðv1Þ ¼ fs1g, and the sink-reachability of v3 is
rGðv3Þ ¼ fs2; s3g.

The relation ’r � V � V , where u ’r v iff (if and only if)
rGðuÞ ¼ rGðvÞ, is an equivalence relation that is reflexive,
symmetric, and transitive. Thus, if we contract each equiva-
lence class of ’r into a super-vertex, the sink-reachability
for all vertices is still preserved in the resulting graph,
where the equivalence class of vertex u 2 V is ½u�’r ¼ fv 2
V ju ’r vg. We define condensation for any equivalence
relation as follows.

Definition 3. Given a sink graph G ¼ ðV; S; EÞ and an equiva-
lence relation ’ � V � V , the condensation of G induced by
’ is the triple G’ ¼ ðV’; S’; E’Þ such that
� V’ ¼ f½u�’ ju 2 V g represents classes of vertices,
� S’ ¼ S, and
� E’ ¼ fð½u�’; ½v�’Þ j ðu; vÞ 2 E ^ ½u�’ 6¼ ½v�’g

where self-loops and parallel edges are removed, and the equiv-
alence relation ’ is extended to include S by defining ½s�’ ¼
fsg for each s 2 S.

For example, Fig. 2 shows the condensation of G induced
by the equivalence relation that has two non-trivial equiva-
lence classes: fv10; v11; v12g and fv3; v4; . . . ; v9g. Note that G’
is also a sink graph. That is, condensation maps sink graphs to
sink graphs.

Fig. 1. A toy sink graph.
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Definition 4. Given a sink graph G ¼ ðV; S; EÞ and an equiva-
lence relation ’ � V � V , the condensation G’ is sink-reach-
ability preserving if it preserves the sink-reachability for all
vertices of V , i.e., rGðuÞ ¼ rG’ð½u�’Þ; 8u 2 V .

As a condensation reduces the graph size (i.e., jV’j � jV j
and jE’j � jEj), we refer to a sink-reachability preserving
condensation as a sink-reachability preserving graph reduction.
The condensationG’r is the smallest (in terms of vertex num-
ber) sink-reachability preserving reduction we can obtain.
Thus, we call the relation ’r the kernel equivalence relation and
the condensationG’r the kernel condensation. For example, the
condensation in Fig. 2 is the kernel condensation of the graph
in Fig. 1. However, directly computing the kernel condensa-
tion requires at least quadratic time in the worst case which is
prohibitive for large graphs with millions of vertices. Thus,
we resort to approximating the kernel condensation. We say
thatG’ under-approximates the kernel condensationG’r if’�
’r . It is easy to see that a condensation is sink-reachability
preserving iff it under-approximates the kernel condensation.

Problem Statement. Given a sink graph G ¼ ðV; S; EÞ, in
this paper we study the problem of sink-reachability pre-
serving graph reduction, i.e., compute a condensation G’
that is small and under-approximates G’r .

Without loss of generality, we assume that the input sink
graph G satisfies rGðuÞ 6¼ ; for every u 2 V ; otherwise, all
such vertices with rGðuÞ ¼ ; can be removed from G in a
pre-processing step in linear time. Frequently used nota-
tions are summarized in Table 1.

4 A COMPOSITIONAL APPROACH

In this section, we propose a compositional approach to
sink-reachability preserving graph reduction. We first
investigate four linear-time condensation operators in Sec-
tion 4.1, and then compose them in Section 4.2.

4.1 Linear-Time Condensation Operators

We study the condensations induced by SCC-, DOM-, IMOD-,
and CMOD-equivalence relations in the following three sub-
sections. We show that each of the four condensations
under-approximates the kernel condensation, and can be
conducted in linear time.

4.1.1 SCC-Condensation

Our first condensation is based on the concept of strongly
connected component (SCC). An SCC of a directed graph is
a maximal set of vertices such that every pair of its vertices
can reach each other [29].

Definition 5. Given a sink graph G ¼ ðV; S; EÞ, two vertices
u; v 2 V are said to be SCC-equivalent, denoted u ’scc v, if
they belong to the same SCC in G.

The relation induced by SCC-equivalence is reflexive, sym-
metric, and transitive. Moreover, SCC-equivalent vertices are
also equivalent in the kernel equivalence relation, i.e., ’scc�
’r . Hence, the condensation induced by the SCC-equivalence
relation, called SCC-condensation, is sink-reachability preserv-
ing. For the sink graph in Fig. 1, the only non-trivial SCC is
fv3; v4; v5; v6g, and its SCC-condensation is shown in Fig. 3.

Algorithm 1. Algorithm for SccCondense (Operator S)

Require: A sink graph G ¼ ðV; S; EÞ
Ensure: SCC-condensation of G
1: Compute the set of all SCCs in G
2: Condense G based on the equivalence classes defined by the

SCCs

Each SCC defines an equivalence class under SCC-equiva-
lence. To conduct SCC-condensation, we first compute all the
SCCs and then contract each SCC into a super-vertex. The
pseudocode is shown in Algorithm 1. It is well-known that
the set of all SCCs in a directed graph can be computed in
linear time, e.g., by Tarjan’s algorithm [30]. Consequently,
SCC-condensation can be conducted in linear time. In the fol-
lowing, we call Algorithm 1 the condensation operator S.

4.1.2 DOM-Condensation

Our second condensation is based on the concept of domi-
nance. In order to define dominance on a sink graph G ¼
ðV; S;EÞ, we need to introduce an exit vertex ? to G, and
add an edge from every sink vertex s 2 S to ? , e.g., see
Fig. 4. In the following, we assume that such an exit vertex
? always exists in G. Then, vertex u 2 V is said to dominate
vertex v 2 V (or v is dominated by u), if every path from v to
? goes through u.

Fig. 2. Kernel condensation of the graph in Fig. 1.

TABLE 1
Frequently Used Notation

Notation Description

ðV; S; EÞ Sink graph where V \ S ¼ ; and
NþðsÞ \ V ¼ ;; 8s 2 S

uˆ Gv u reach v in G, i.e., there is a path in G from u to v
rGðuÞ Sink reachability of u: rGðuÞ ¼ fs 2 S juˆ Gsg
tðuÞ Topological number of vertex u in a DAG
’ An equivalence relation ’� V � V
’r The kernel equivalence relation, where u ’r v iff

rGðuÞ ¼ rGðvÞ
½u�’ The equivalence class of u that is defined by ’
G’ sink reachability reduction w.r.t. ’
C A composition sequence of condensation

operators

Fig. 3. SCC-Condensation of the graph in Fig. 1.

5324 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 04,2023 at 00:05:56 UTC from IEEE Xplore.  Restrictions apply. 



Definition 6. Given a sink graph G ¼ ðV; S; EÞ, two vertices
u; v 2 V are said to be DOM-equivalent, denoted u ’dom v, if
either u dominates v or v dominates u in G.

The relation induced by DOM-equivalence directly is not
transitive. For example, it is possible that both u and w are
dominated by another vertex v, but there is no dominance
between u and w. We manually enforce transitivity, i.e., we
also add ðu;wÞ to the relation ’dom if this happens. We call
the resulting relation ’dom the DOM-equivalence relation
which is reflexive, symmetric, and transitive. It can be veri-
fied that ’dom�’r . Thus, the condensation induced the
DOM-equivalence relation, called DOM-condensation, is sink-
reachability preserving. For the sink graph in Fig. 1, v11
dominates v12, and v3 dominates fv5; v6; v7; v8; v9g; its DOM-
condensation is shown in Fig. 4.

It is known in [31], [32] that the dominance relationship
among all vertices in a directed graph can be compactly rep-
resented by a dominator tree rooted at ? , and the domina-
tor tree can be constructed in linear time. Consequential, we
can obtain the DOM-equivalence classes from the dominator
tree in linear time. However, the linear-time dominator tree
construction algorithms [32] are complicated. In this paper,
we propose a simpler and practical algorithm to conduct
DOM-condensation by

� directly obtaining the DOM-equivalence classes with-
out constructing the dominator tree, and

� assuming that the sink graph is acyclic (which will be
made possible in Section 4.2).

Recall that, for any directed acyclic graph (DAG) with
vertices V and edges E, we can assign a unique topological
number tðuÞ to each vertex u 2 V such that tðuÞ < tðvÞ holds
for every ðu; vÞ 2 E, and then a topological ordering of V is
the increasing ordering of V regarding their topological
numbers [29]. Thus, in a DAG, a necessary condition for u
to dominate v is tðuÞ > tðvÞ. Then, we have the following
two lemmas.

Lemma 4.1. Given any sink graph G, vertex v 2 V is dominated
by vertex u 2 V iff all out-neighbors of v are dominated by u.

Proof. The proof of the “if” part is trivial. We prove the
“only if” part by contradiction. Suppose there exists a ver-
tex v 2 V that is dominated by a vertex u 2 V , but one of
its out-neighbors w 2 NþðvÞ is not dominated by u. Recall
that we assumed in Section 3 that rGðxÞ 6¼ ; for every x 2
V . Then, there must be at least one path from w to ? that
does not go through u. By prepending v to the beginning
of this path, we obtain a path from v to ? that does not go
through u; this contradicts that u dominates v. Thus, the
lemma holds. tu

Lemma 4.2. Each DOM-equivalence class M is a maximal subset
of V such that all vertices of M are dominated by the vertex in
M with the largest topological number.

Algorithm 2. Algorithm for DomCondense (Operator D)

Require: An acyclic sink graph G ¼ ðV; S; EÞ
Ensure: DOM-condensation of G
1: Initialize a disjoint-set data structure D for V
2: Compute a topological ordering of V
3: for vertex u 2 V in reverse topological ordering do
4: if NþðuÞ \ S ¼ ; and NþðuÞ belong to the same set in D

then
5: Union u andNþðuÞ in D
6: end if
7: end for
8: Condense G based on the equivalence classes defined by D

Proof. First, following from the definition of DOM-equiva-
lence relation, all such vertices that are dominated by the
same vertex must be in the same DOM-equivalence class.
Second, we prove by contradiction that all vertices in a
DOM-equivalence class M must be dominated by the ver-
tex u	 2M that has the largest topological number. Sup-
pose there are vertices inM not dominated by u	. Let v be
the vertex in M with the largest topological number that
is not dominated by u	, and Mv be the maximal subset of
M (including v itself) that are dominated by v; note that
MnMv 6¼ ;. Then, vertices of MnMv cannot be dominated
by any vertex of Mv, as the dominance relationship is
transitive. In addition, vertices of Mv cannot be domi-
nated by any vertex of MnMv, as otherwise v would also
be dominated by this vertex from MnMv which in turn is
dominated by u	 (note that, all vertices dominating v
have larger topological numbers than v). Thus, Mv and
MnMv cannot be in the same DOM-equivalence class, and
the lemma holds. tu
Following from the above two lemmas, we propose to

incrementally grow the equivalence classes by processing
vertices according to the reverse of the topological ordering.
When processing vertex u, all its out-neighbors must have
already been processed; if all its out-neighbors are in the
same equivalence class (indicating that u is dominated by a
vertex in the equivalence class), then u itself should also
belong to this equivalence class. The pseudocode of our
DOM-condensation algorithm is shown in Algorithm 2,
where we use a disjoint-set data structure D to incremen-
tally grow the equivalence classes. We call Algorithm 2 the
condensation operator D. Its correctness and time complex-
ity are proved in the theorem below.

Theorem 2. Given any sink graph G, Algorithm 2 correctly
computes the DOM-condensation of G in OðjEjÞ time.

Proof. The correctness directly follows from Lemmas 4.1
and 4.2. Regarding the time complexity, Line 2 can be
computed in linear time [29], and the total time for con-
ducting Lines 4–5 for all vertices is OðjEjaðjEjÞÞ [29].
Here, að
Þ is a functional inverse of Ackermann’s func-
tion [29], and is at most 4 for all practical input values; we
consider að
Þ to be constant in this paper. Thus, the theo-
rem holds. tu

Fig. 4. DOM-Condensation of the graph in Fig. 1.
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4.1.3 IMOD-Condensation and CMOD-Condensation

Our next two condensations are based on the concept of
module [28], [33], which we adapt to sink graph as follows.
Given a sink graph G ¼ ðV; S; EÞ, a vertex subset M � V is a
module if all vertices of M have the same external out-neigh-
bors, i.e., NþðuÞnM ¼ NþðvÞnM;8u; v 2M. It is easy to see
that all vertices in the same module are equivalent in the
kernel equivalence relation ’r . However, there are two
challenges to compute modules.

� The existing studies on modular decomposition
require all vertices in a module to have the same exter-
nal in-neighbors as well as the same external out-
neighbors, while we only require the same external
out-neighbors.

� The existing algorithms designed for modular
decomposition on directed graphs are of theoretical
interest only, where no implementation exists.

Thus, we define the following two special cases of mod-
ule that we can compute efficiently.

Algorithm 3. Algorithm for iModCondense (Operator Mi)

Require: A sink graph G ¼ ðV; S; EÞ
Ensure: IMOD-condensation of G
1: Initialize a partitioning P ¼ fV g
2: for vertex u 2 V [ S do
3: Refine P based on N�ðuÞ (i.e., each partition P 2 P is split

into P \N�ðuÞ and PnN�ðuÞ)
4: end for
5: Condense G based on the equivalence classes defined by P

Definition 7. Given a sink graph G ¼ ðV; S; EÞ, two vertices
u; v 2 V are said to be IMOD-equivalent, denoted u ’imod v, if
NþðuÞ ¼ NþðvÞ.

Definition 8. Given a sink graph G ¼ ðV; S; EÞ, two vertices
u; v 2 V are said to be CMOD-equivalent, denoted u ’cmod v, if
ðu; vÞ 2 E and NþðuÞnfvg � NþðvÞ.
The relation induced by IMOD-equivalence is reflexive,

symmetric, and transitive. For CMOD-equivalence, we addi-
tionally enforce reflexivity, symmetry, and transitivity, simi-
lar to Section 4.1.2, to obtain a CMOD-equivalence relation. It
is easy to see that ’imod�’r and ’cmod�’r . Thus, the con-
densation induced by the IMOD-equivalence relation, called
IMOD-condensation, and the condensation induced by the
CMOD-equivalence relation, called CMOD-condensation, are
both sink-reachability preserving. For the sink graph in
Fig. 1, its IMOD-condensation is shown in Fig. 5 and its CMOD-

condensation is shown in Fig. 6. Note that, alternatively we
can change the condition in Definition 8 to be “ðu; vÞ 2 E
and NþðuÞnfvg ¼ NþðvÞ”. However, it can be verified that
Definition 8 defines a larger equivalence relation and thus is
better for condensation.

Algorithm 4. Algorithm for cModCondense (OperatorMc)

Require: An acyclic sink graph G ¼ ðV; S; EÞ
Ensure: CMOD-condensation of G
1: Initialize a disjoint-set data structure D for V
2: Assign a topological number tðuÞ to each vertex u 2 V [ S,

and obtain a topological ordering of V [ S
3: for vertex u 2 V do
4: tminðuÞ  minv2NþðuÞtðvÞ
5: end for
6: for vertex v 2 V in reverse topological ordering do
7: Mark v andNþðvÞ
8: for in-neighbor u 2 N�ðvÞ of v do
9: if tminðuÞ ¼ tðvÞ and dþðuÞ � 1 � dþðvÞ then
10: if all out-neighbors of u are marked then
11: Union u and v in D
12: end if
13: end if
14: end for
15: Unmark v andNþðvÞ
16: end for
17: Condense G based on the equivalence classes defined by D

The pseudocode of conducting IMOD-condensation is
shown in Algorithm 3, which is self-explanatory. We call
Algorithm 3 the condensation operator Mi. Its correctness
and time complexity is proved in the theorem below.

Theorem 3. Given any sink graph G, Algorithm 3 correctly
computes the IMOD-condensation of G in OðjEjÞ time.

Proof. First, it is easy to see that for any two IMOD-equivalent
vertices v and w, they will never be split into different
partitions at Line 3. Second, consider any two vertices v
and w that are not IMOD-equivalent. Without loss of gener-
ality, assume there is a vertex u 2 NþðvÞnNþðwÞ. Then, v
and w must be in two different partitions after processing
u for Line 3. Thus, Algorithm 3 correctly computes the
IMOD-condensation. The linear time complexity of Algo-
rithm 3 follows from the fact that each refinement at
Line 3 can be conducted in Oðd�ðuÞÞ time [1]. tu
The pseudocode of conducting CMOD-condensation is

shown in Algorithm 4, like Algorithm 2 it assumes that the
sink graph is acyclic. The algorithm processes vertices in
reverse topological ordering (Line 6). When processing ver-
tex v, it checks for every in-neighbor u 2 N�ðvÞ whether
NþðuÞnfvg � NþðvÞ: if the condition holds (Line 10), then u

Fig. 5. IMOD-condensation of the graph in Fig. 1.

Fig. 6. CMOD-condensation of the graph in Fig. 1.
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and v are CMOD-equivalent (see Definition 8). Here, for time
efficiency consideration, we first conduct a constant-time fil-
tering at Line 9: tminðuÞ ¼ tðvÞ and dþðuÞ � 1 � dþðvÞ which
are necessary conditions for NþðuÞnfvg � NþðvÞ to hold.
We call Algorithm 4 the condensation operatorMc.

To prove the correctness of Algorithm 4, we first define
the concept of subsume and subsume graph.

Definition 9. Given an acyclic sink graph G ¼ ðV; S; EÞ, v 2 V
subsumes u 2 V if ðu; vÞ 2 E and NþðuÞnfvg � NþðvÞ. The
subsume graph of G consists of vertices V , and it has a
directed edge from u to v if v subsumes u.

Then, we show the connection between CMOD-equiva-
lence classes and (weakly) connected components of the
subsume graph in the lemma below.

Lemma 4.3. The subsume graph consists of a set of rooted trees,
where in each rooted tree, the edges point towards the root.
Each CMOD-equivalence class consists of all vertices in a
(weakly) connected component of the subsume graph.

Proof. First, it is easy to verify that each vertex is subsumed
by at most one of its out-neighbors. In particular, a vertex
can only be possibly subsumed by the out-neighbor that
has the smallest topological number. Thus, in the sub-
sume graph, each vertex has at most one outgoing edge,
and the subsume graph consists of a set of rooted trees
where edges point towards root. tu
Second, according to the definition of CMOD-equivalence

relation, each CMOD-equivalence class consists of all vertices
in a (weakly) connected component of the subsume graph.

Now, we are ready to prove the correctness and time
complexity of Algorithm 4.

Theorem 4. Given any sink graph G, Algorithm 4 correctly
computes the CMOD-condensation of G in OðjEjÞ time.

Proof. The correctness directly follows from Lemma 4.3.
Regarding the time complexity, we know that first
Lines 1–5 run in OðjEjÞ time. Second, running Line 9 for
all vertices and their in-neighbors takes OðjEjÞ time in
total. Third, Line 10 is tested for each vertex u at most
once (due to the testing of tminðuÞ ¼ tðvÞ), and each testing
takes time OðdþðuÞÞ. Thus, the total time complexity of
OðjEjÞ follows. tu

4.2 Composing Condensation Operators

In this subsection, we investigate how to compose the four
condensation operators fS;D;Mi;Mcg proposed in Sec-
tion 4.1. Note that, as each condensation operator maps
sink graphs to sink graphs, condensation operators can be
composed.

Definition 10. Given two condensation operators c1 and c2, we
define c1 � c2ðGÞ, for any sink graph G, as c2ðc1ðGÞÞ where
c1ðGÞ denotes the result of condensation of G by c1.

By definition, vertices of c1 � c2ðGÞ are nested sets of ver-
tices from G, i.e., classes of classes. It is practical to flatten
this structure by recursively aggregating the elements of the
nested classes. Let ’1� V � V and ’2� V’1 � V’1 be the
underlying equivalence relations of operator c1 on G and
operator c2 on c1ðGÞ, respectively. We define the

equivalence relation ’1’2� V � V to be: u ’1’2 v if and
only if ½u�’1 ’2 ½v�’1 . Then, the result of flattening c1 � c2ðGÞ
is the same as the condensation of G induced by ’1’2 .
That is, a composition of condensation operators also has an
underlying equivalence relation. In the following, we consider
only flat condensation, and use c1 � c2 to denote the flat con-
densation of composing c1 and c2.

We refer to a composition sequence of any positive num-
ber of condensation operators simply as a condensation
sequence, and use C to denote a condensation sequence. Given
any two condensation sequences C1 and C2, we say C1ðGÞ is
the same as C2ðGÞ for a sink graph G, denoted C1ðGÞ ¼
C2ðGÞ, if the underlying equivalence relation of C1ðGÞ is the
same as that of C2ðGÞ. We say C1 is the same as C2, denoted
C1 ¼ C2, if C1ðGÞ ¼ C2ðGÞ holds for every sink graph G. We
define the maximality of condensation sequences as follows.

Definition 11. Given a sink graph G and a set C of distinct con-
densation operators, a condensation sequence C � c1 � 
 
 
 � cn,
where ci 2 C for 1 � i � n, is said to be maximal if
C � cðGÞ ¼ CðGÞ; 8c 2 C.
Our main results of composing condensation operators

are summarized in the theorem below.

Theorem 5. Let C be fS;D;Mi;Mcg.
1) Given any sink graph G, all maximal condensation

sequences over C reduce G to the same sink graph.
2) Given any sink graph G, the shortest maximal conden-

sation sequence over C can be approximated within a
factor of 3.

3) There exist sink graphs G such that the reduced graph
of G obtained by maximal condensation sequences over
C is larger than the kernel condensation G’r .

In the following, we prove Theorems 5 (1), (2) and (3) in
Sections 4.2.2, 4.2.3, and 4.2.4, respectively. Before that, we
first make some observations on the properties of compos-
ing condensation operators fS;D;Mi;Mcg in Section 4.2.1.

4.2.1 Properties of Composing S;D;Mi;Mc

We first prove the following three lemmas which map edges
in the condensation of G by fD;Mi;Mcg to paths of G.

Lemma 4.4. Given any acyclic sink graph G and consider any
edge ð½u�dom; ½v�domÞ in the DOM-condensation DðGÞ and any
u0 2 ½u�dom, there exists a path in G from u0 to a vertex of ½v�dom
that goes through only vertices of ½u�dom.

Proof. Let u	 be the vertex with the largest topological num-
ber in ½u�dom. Following Lemmas 4.1 and 4.2, we know that
there exists a path in G from u0 to u	 that goes through
only vertices of ½u�dom. Moreover, from the definition of
condensation and the definition of dominance and
Lemma 4.2, we know that there must be an edge ðu	; v0Þ
in Gwhere v0 2 ½v�dom. Thus, the lemma holds. tu

Lemma 4.5. Given any acyclic sink graphG and consider any edge
ð½u�imod; ½v�imodÞ in the IMOD-condensation MiðGÞ and any u0 2
½u�imod, there exists an edge inG from u0 to a vertex of ½v�imod.

Proof. Following the definition of IMOD-equivalence, we
know that Nþðu1Þ ¼ Nþðu2Þ for any two vertices u1; u2 2
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½u�imod. Then, following the definition of condensation, we
know that for any edge ð½u�imod; ½v�imodÞ in MiðGÞ, there
must exist a vertex v0 2 ½v�imod, such that ðu00; v0Þ is an edge
in G for all u00 2 ½u�imod. Thus, the lemma holds. tu

Lemma 4.6. Given any acyclic sink graph G and consider any
edge ð½u�cmod; ½v�cmodÞ in the CMOD-condensation McðGÞ and
any u0 2 ½u�cmod, there exists a path in G from u0 to a vertex of
½v�cmod that goes through only verties of ½u�cmod.

Proof. Consider any CMOD-equivalence class M, let u	 be the
vertex with the largest topological number in M. Then,
for each vertex u 2Mnfu	g, following Lemma 4.3 we
know that (1) there is a path from u to u	 that goes
through only vertices of M, and (2) NþðuÞnM � Nþðu	Þ.
Thus, the lemma can be proved by following the same
argument as in proving Lemma 4.4. tu
The properties of composing condensation operators

fS;D;Mi;Mcg are summarized in the theorem below.

Theorem 6. We note the following properties of composing con-
densation operators fS;D;Mi;Mcg.

1) S is idempotent, i.e., S � S ¼ S.
2) D is idempotent, i.e., D � D ¼ D.
3) Mi is not idempotent, i.e., there exist sink graphs G

such thatMi �MiðGÞ 6¼ MiðGÞ.
4) Mc is not idempotent, i.e., there exist sink graphs G

such thatMc �McðGÞ 6¼ McðGÞ.
5) Given any acyclic sink graph G, DðGÞ, MiðGÞ and

McðGÞ are all acyclic.
Proof. The five properties are proved one-by-one in the

following. tu
Proof of Property (1). According to the definition, an SCC

is a maximal set of vertices such that every pair of its verti-
ces can reach each other. Thus, after contracting each SCC
into a super-vertex, the resulting graph is acyclic. As a
result, S � SðGÞ ¼ SðGÞ holds for every sink graph G.

Proof of Property (2). Recall that operator D takes an acy-
clic sink graph as input (see Algorithm 2). We prove this
property by contradiction. Suppose there exists an acyclic
sink graph G such that D � DðGÞ 6¼ DðGÞ; that is, in DðGÞ,
there exists a vertex ½u�dom that dominates another vertex
½v�dom 6¼ ½u�dom. Without loss of generality, assume that there
is no other vertex ½w�dom such that ½w�dom also dominates
½v�dom and is dominated by ½u�dom. Then, ½v�dom has only one
out-neighbor in DðGÞ, which is ½u�dom. Following Lemma 4.2
and the definition of condensation, all vertices of ½v�dom must
be dominated in G by the vertex u	 with the largest topolog-
ical number in ½u�dom. This contradicts that ½v�dom 6¼ ½u�dom.

Proof of Property (3). This can be easily seen by using the
example depicted in Fig. 7. Applying operator Mi yields

only one non-trivial IMOD-equivalence class fv1; v2; v3g. Once
this equivalence class is contracted, another application of
Mi on the resulting sink graph finds another IMOD-equiva-
lence class fv4; v5g.

Proof of Property (4). This can also be easily seen by using
the example depicted in Fig. 8. Applying operator Mc yields
only one non-trivial CMOD-equivalence class fv1; v2g. Once
this equivalence class is contracted, another application of
Mc on the resulting sink graph finds another CMOD-equiva-
lence class ffv1; v2g; v3g.

Proof of Property (5). This can be proved by contradiction
and using the results of Lemmas 4.4, 4.5 and 4.6. That is,
suppose there is a cycle in DðGÞ, MiðGÞ or McðGÞ, then we
can also find a cycle inGwhich contradicts thatG is acyclic.

It is worth mentioning that Figs. 7 and 8 also demonstrate
that the operators D, Mi, Mc complement each other. For
example, there are no non-trivial DOM-equivalence classes in
these two graphs, there are no non-trivial CMOD-equivalence
classes in Fig. 7, and there are no non-trivial IMOD-equiva-
lence classes in Fig. 8.

4.2.2 Fixpoint of Maximal Condensation Sequences

We now consider the question of whether, for any sink
graph G, the applications of different condensation sequen-
ces reach the same fixpoint. Following Theorem 6, we do
not need to consider all sequences in ðSjDjMijMcÞ	 since
some sequences are known to yield the same result for an
arbitrary sink graph. In particular, we first can restrict our
study to sequences where S is always followed by D, or Mi,
or Mc, as S � S ¼ S (see Theorem 6 (1)). Moreover, once
operator S has been applied, no further application of S
will be needed any more; this is because Theorem 6 (5)
shows that operators D;Mi;Mc preserve the acyclicity of
sink graphs. As a result, we assume an acyclic input sink graph
and consider only operators D;Mi andMc in the following.

Obviously, two non-maximal condensation sequencesmay
reduce a sink graph into different sizes. On the other hand,
since condensation reduces the graph size and graphs have a
trivial lower bound size of 0, every condensation sequence
can be extended to a maximal one. Then, the question arises
as to whether all maximal condensation sequences produce
the same result for an arbitrary sink graph, i.e., whether the
applications of all maximal condensation sequences reach a
unique fixpoint. To answer this question, we define aggrega-
tion between two condensation sequences, and define the
monotonicity of a condensation operator as follows.

Definition 12. Given a sink graph G ¼ ðV; S; EÞ and two con-
densation sequences C1 and C2, let ’1� V � V and ’2�
V � V be their underlying equivalence relations, then C2ðGÞ is
said to be an aggregation of C1ðGÞ, denoted C1ðGÞ 
 C2ðGÞ, if
½u�’1 � ½u�’2 ; 8u 2 V . That is, C2ðGÞ can be considered as a
further condensation of C1ðGÞ.

Fig. 7. Mi is not idempotent.

Fig. 8. Mc is not idempotent.
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Definition 13. A condensation operator c is said to be monotone
regarding a set C of condensation operators if for any acyclic
sink graph G and any two condensation sequences C1 and C2

over C, C1ðGÞ 
 C2ðGÞ implies that C1 � cðGÞ 
 C2 � cðGÞ.
We prove in the theorem below that, the applications of

all maximal condensation sequences over a set C of mono-
tone condensation operators reach a unique fixpoint.

Theorem 7. Given any set C of monotone condensation operators
and any sink graphG, all maximal condensation sequences over
C reduce G to the same sink graph.

Proof. Let I be the identity condensation operator, i.e.,
IðGÞ ¼ G holds for every sink graph G. For a given sink
graph G, let C1 � c11 � 
 
 
 � c1n and C2 � c21 � 
 
 
 � c2m be any
two maximal condensation sequences over C. Then, trivi-
ally we have IðGÞ 
 C1ðGÞ. By appending C2 to both
sides, we have C2ðGÞ ¼ I � C2ðGÞ 
 C1 � C2ðGÞ ¼ C1ðGÞ,
as all condensation operators of C are monotone; the sec-
ond equality follows from the fact that C1 is maximal for
G. Similarly, we also have C1ðGÞ ¼ I � C1ðGÞ 
 C2�
C1ðGÞ ¼ C2ðGÞ. Thus, C1ðGÞ ¼ C2ðGÞ according to Defini-
tion 12, and the theorem holds. tu
In the following, we prove that all our operators D;Mi;Mc

are monotone regarding C ¼ fD;Mi;Mcg.
Operator D is Monotone. We prove this by contradiction.

Suppose there is an acyclic sink graph G ¼ ðV; S; EÞ and
two condensation sequences C1 and C2 such that C1ðGÞ 

C2ðGÞ and C1 � DðGÞ 6
 C2 � DðGÞ. Let ’1;’2;’3;’4 be the
underlying equivalence relations of C1ðGÞ;C2ðGÞ;C1 �
DðGÞ;C2 � DðGÞ, respectively. Then, there must exist two
vertices u; v 2 V such that ½u�’1 6¼ ½v�’1 , u ’3 v (which is the
result of ½u�’1 dominating ½v�’1 in C1ðGÞ) and u 6’4 v. Conse-
quently, u 6’2 v and u 6’1 v. As u 6’4 v, ½u�’2 does not domi-
nate ½v�’2 in C2ðGÞ; that is, there is a path from ½v�’2 to ? in
C2ðGÞ that does not go through ½u�’2 . Following Lemmas 4.4,
4.5 and 4.6, there is a path from v to ? in G without going
through any vertices of ½u�’2 . As C1ðGÞ 
 C2ðGÞ, we have
½u�’1 � ½u�’2 . Thus, there is a path from ½v�’1 to ? in C1ðGÞ
without going through ½u�’1 . This contradicts that ½u�’1
dominates ½v�’1 in C1ðGÞ. Thus, operator D is monotone
regarding fD;Mi;Mcg.

Operator Mi is Monotone. We prove this by contradiction.
Suppose there is an acyclic sink graph G ¼ ðV; S; EÞ and
two condensation sequences C1 and C2 such that C1ðGÞ 

C2ðGÞ and C1 �MiðGÞ 6
 C2 �MiðGÞ. Let ’1;’2;’3;’4 be the
underlying equivalence relations of C1ðGÞ;C2ðGÞ;C1 �
MiðGÞ;C2 �MiðGÞ, respectively. Then, there must exist two
vertices u; v 2 V such that u ’3 v and u 6’4 v. Consequently,
u 6’2 v and u 6’1 v, and Nþ

C1ðGÞð½u�’1Þ ¼ Nþ
C1ðGÞð½v�’1Þ. Here,

Nþ
C1ðGÞð½u�’1Þ denotes the set of out-neighbors of ½u�’1 in

C1ðGÞ. As u 6’4 v, we have Nþ
C2ðGÞð½u�’2Þ 6¼ Nþ

C2ðGÞð½v�’2Þ;
without loss of generality, we can safely assume that
ð½v�’2 ; ½u�’2Þ is not an edge of C2ðGÞ and there is a ½w�’2 2
Nþ

C2ðGÞð½u�’2ÞnN
þ
C2ðGÞð½v�’2Þ (note that, ½w�’2 can be the same

as ½v�’2 ). Following Lemmas 4.4, 4.5 and 4.6, for any u0 2
½u�’1 � ½u�’2 , there is a vertex w0 2 ½w�’2 such that there is a
path from u0 to w0 that does not go though any vertices out-
side ½u�’2 . Thus, there must be a ½x�’1 � ½u�’2 [ ½w�’2 such
that ð½u�’1 ; ½x�’1Þ is an edge of C1ðGÞ (i.e., there is an edge in

G from a vertex of ½u�’1 to a vertex of ½x�’1 ) and ð½v�’1 ; ½x�’1Þ
is not an edge of C1ðGÞ (i.e., there is no edge in G from any
vertex of ½v�’1 to any vertex of ½x�’1 ). This contradicts that
Nþ

C1ðGÞð½u�’1Þ ¼ Nþ
C1ðGÞð½v�’1Þ. Thus, operator Mi is monotone

regarding fD;Mi;Mcg.
Operator Mc is Monotone. We prove this by contradiction.

Suppose there is an acyclic sink graph G ¼ ðV; S; EÞ and
two condensation sequences C1 and C2 such that C1ðGÞ 

C2ðGÞ and C1 �McðGÞ 6
 C2 �McðGÞ. Let ’1;’2;’3;’4 be
the underlying equivalence relations of C1ðGÞ;C2ðGÞ;C1 �
McðGÞ;C2 �McðGÞ, respectively. Then, there must exist two
vertices u; v 2 V such that ½u�’1 6¼ ½v�’1 , u ’3 v (which is the
result of ½u�’1 subsuming ½v�’1 in C1ðGÞ), and u 6’4 v. Conse-
quently, u 6’2 v and u 6’1 v. As u 6’4 v, ½u�’2 does not sub-
sume ½v�’2 in C2ðGÞ; that is, there is a vertex ½w�’2 2
Nþ

C2ðGÞð½v�’2ÞnðN
þ
C2ðGÞð½u�’2Þ [ f½u�’2gÞ (note that, ð½v�’2 ; ½u�’2Þ

must be an edge in C2ðGÞ). Following Lemmas 4.4, 4.5 and
4.6, for any v0 2 ½v�’2 , there is a vertex w0 2 ½w�’2 such that

there is path from v0 to w0 that does not go though any vertex
outside ½v�’2 . Thus, there must be a ½x�’1 � ½v�’2 [ ½w�’2 such
that ð½v�’1 ; ½x�’1Þ is an edge of C1ðGÞ and ð½u�’1 ; ½x�’1Þ is not
an edge of C1ðGÞ. This contradicts that NþC1ðGÞð½v�’1ÞnðN

þ
C1ðGÞ

ð½u�’1Þ [ ½u�’1Þ ¼ ;. Consequently, operator Mc is monotone
regarding fD;Mi;Mcg.

4.2.3 Approximate Shortest Reduction Sequence

From Section 4.2.2, we call maximal condensation sequences
reduction sequences. As each condensation operator runs in lin-
ear time, the running time of a reduction sequence grows line-
arly with its length (i.e., the number of condensation operators
in the sequence). Thus, for any given sink graphG, it is ideal to
have a shortest reduction sequence. In this paper, we propose a
simple reduction sequence in the theorem below which is a
3-approximation to the shortest reduction sequence, and leave
finding shorter reduction sequences as futurework.

Theorem 8. Given any acyclic sink graphG, let C be the composi-
tion of any permutation of D;Mi;Mc, and letC

	 be the sequence of
repeatedly applyingC until convergence, then the length ofC	 is at
most three times the length of the shortest reduction sequence.

Proof. Without loss of generality, assume C � D �Mi �Mc.
Consider a shortest reduction sequence C of G, let n be
the length of C (i.e., n ¼ jCj) and CD be the sequence
obtained by augmenting C as follows: for each condensa-
tion operator c 2 C, replace it with C. We prove by induc-
tion that CD is maximal; thus jC	j � jCDj ¼ 3n. Denote Ci

the prefix of C with exactly i condensation operators, and
CD
i the result of augmenting Ci. Initially, C0ðGÞ ¼ CD

0 ðGÞ
trivially holds. Assume that Ci�1ðGÞ 
 CD

i�1ðGÞ holds.

Fig. 9. An example sink graph G where G 6¼ G’r but G cannot be
reduced by fS;D;Mi;Mcg.
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We have CiðGÞ ¼ Ci�1 � fDjMijMcgðGÞ 
 CD
i�1 � fDjMijMcg

ðGÞ 
 CD
i�1 � D �Mi �McðGÞ ¼ CD

i ðGÞ, as operators D;Mi;
Mc are monotone regarding fD;Mi;Mcg. Thus, CnðGÞ 

CD
nðGÞ. Moreover, from Section 4.2.2, we know that

CD
nðGÞ 
 CnðGÞ. Thus, the theorem holds. tu

4.2.4 Gap to the Kernel Condensation

We know from Section 4.2.2 that, (1) given any sink graph
G, the result of SðGÞ is acyclic, and (2) given any acyclic
sink graph G0, all maximal condensation sequences over
fD;Mi;Mcg reduce G0 to the same sink graph. It is natural to
ask whether the reduced graph at the fixpoint is the same as
the kernel condensation G’r . We show by the following the-
orem that the answer is “no”.

Theorem 9. There are sink graphs G such that all condensation
sequences over condensation operators fS;D;Mi;Mcg yield a
reduced sink graph that is larger than G’r .

Proof. This can be easily seen by using the example sink
graph G depicted in Fig. 9. It can be verified that G cannot
be reduced by any of the condensation operators fS;D;Mi;
Mcg. However, rGðv3Þ ¼ rGðv4Þ ¼ fs1; s2; s3g, i.e., v3 ’r v4.

tu
We leave the study of efficiently computing the kernel

condensation G’r to future work. Nevertheless, in practice
maximal condensation sequences over fS;D;Mi;Mcg com-
press sink graphs close to their kernel condensations, as we
will show empirically in Section 5.

5 EXPERIMENTS

In this section, we conduct extensive empirical studies on
real sink graphs aiming to answer the following questions.

1) How effective are the individual condensation operators S,
D, Mi, Mc for sink-reachability preserving reduction?
(Eval-I in Section 5.1)

2) How effective is our compositional approach to sink-reach-
ability preserving reduction? (Eval-II)

3) How long are our compression sequences and how far are
they from the shortest one? (Eval-III)

4) Which reduction sequence to use in practice? (Eval-IV)
5) Is our reduction useful for computing reachability

indexes? (Eval-V)
Datasets. As discussed in Section 1, static program analy-

sis naturally models programs to be analysed as sink
graphs. We downloaded 15 programs for our testings: 13
mid-sized Java programs from the Dacapo benchmark [34],3

openjdk8 from the Java standard class library, and jenkins
from a popular open-source web application for continuous
integration. For each program, we use the doop processing
pipeline [35] to produce datalog facts, and then build sink
graphs from the records that represent assignments and
allocations. This resulted in 15 sink graphs shown in Table 2

TABLE 2
Statistics of Sink Graphs G ¼ ðV; S;EÞ, Where jVrj Represents the Vertex Count in the Kernel Condensation, jV cj and jEcj Repre-
sent the Vertex Count and Edge count in the Core Graph (i.e., After Removing All Vertices That Cannot Reach Any Sink Vertices)

Graphs jV j jSj jEj DAG? jV cj jEcj jVrj
avrora-s 562615 68971 708614 no 248066 483220 10340
batik-s 684010 78921 864264 no 290420 571600 12560
eclipse-s 324226 41516 414638 no 146513 289207 6183
fop-s 765724 95327 989696 no 339797 674585 13524
h2-s 590845 70293 758421 no 259960 514197 10402
jenkins-s 3196349 404514 4103165 no 1398361 2750669 41580
jython-s 867730 88565 1155836 no 352899 675566 12356
luindex-s 317197 41454 401044 no 143613 282322 5996
lusearch-s 317510 41503 401416 no 143639 282425 5997
openjdk8-s 1573653 215902 1978755 no 694939 1346830 22324
pmd-s 568521 67999 725670 no 247054 482285 10258
sunflow-s 522667 64464 664208 no 230685 450004 9880
tomcat-s 303510 40426 390167 no 141100 277496 5938
tradebean-s 272083 36272 346088 no 125810 246038 5356
xalan-s 673681 99952 841457 no 311060 601623 10908
avrora-l 562615 68971 2725835 no 443283 2369919 11794
batik-l 684010 78921 3336522 no 533147 2910704 14339
eclipse-l 324226 41516 1421235 no 248581 1233657 7160
fop-l 765724 95327 4063315 no 603459 3573151 15449
h2-l 590845 70293 2865741 no 460667 2480215 11964
jenkins-l 3196349 404514 59821383 no 2466802 53310172 48198
jython-l 867730 88565 26716793 no 701498 25943050 13676
luindex-l 317197 41454 1401880 no 245739 1222298 7178
lusearch-l 317510 41503 1402425 no 245938 1222868 7180
openjdk8-l 1573653 215902 12387187 no 1257860 11035312 26755
pmd-l 568521 67999 3068722 no 441828 2657647 11726
sunflow-l 522667 64464 2482443 no 409761 2152612 11171
tomcat-l 303510 40426 1327010 no 233842 1152127 6739
tradebean-l 272083 36272 1139807 no 209582 993454 6224
xalan-l 673681 99952 2997836 no 520315 2593130 12530
LiveJournal1-8 893533 77699 1017575 yes 366304 522267 7390
soc-Pokec-8 299821 26071 377788 yes 112609 168423 2825
web-BerkStan-8 100654 8752 574228 yes 81157 553039 209
web-Google-8 342023 29741 508426 yes 156756 263057 3536

3. The Dacapo benchmark consists of 14 programs. We removed one
program, tradesoap, as it is almost identical to another program in the
benchmark, tradebean.
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with suffix “-s” in the name. These graphs provide an
unsound model for program analysis as methods are not
devirtualised and fields are not modelled; unsound here
means that the model does not represent the complete run-
time behaviour of the program being analysed.

To build a sound model, we then added additional edges
to model flow through fields for matching store-load
records by following the process described in [14], and
added additional assign edges modelling inter-procedural
flow created by devirtualisation. The result of adding those
two sets of additional edges is the 15 denser sink graphs
shown in Table 2 with suffix “-l” in the name.

In addition, we also downloaded four social network and
web graphs from SNAP:4 LiveJournal1, soc-Pokec, web-
BerkStan, and web-Google. As these graphs are not sink
graphs, we convert them into sink graphs as follows: we
first contract each SCC into a super-vertex, then compute a
topological ordering for the resulting DAG, and finally
assign the last x% percent of vertices as sink vertices. We
choose x from f2; 4; 6; 8; 10; 20; 40g, and set x ¼ 8 by default
which are shown in Table 2 with suffix “-8” in the name.

Statistics of these sink graphs are summarized in Table 2,
where jV j represents the number of non-sink vertices, jSj
represents the number of sink vertices, and jEj represents
the total number of edges. It is as expected that the graphs
extracted with the second method (named -d) are much
denser than the graphs extracted with the first method
(named -s). The sink graphs obtained from programs con-
tain cycles, while the sink graphs constructed from social
networks and web graphs are acyclic, as illustrated in the
fifth column. For each sink graph G, we also obtain its core
graph, denoted Gc, which is the result of removing all non-
sink vertices that cannot reach any sink vertices. We apply
our reduction techniques on the core graph, as all non-sink
vertices that cannot reach any sink vertices can be easily
identified and removed in linear time in a preprocessing
step using a simple traversal starting from the sink verti-
ces. We denote the number of non-sink vertices and the
number of edges in the core graph by jV cj and jEcj, respec-
tively, those are shown in the sixth and seventh columns
of Table 2; note that, the number of sink vertices still
remains jSj. In Table 2, we also show the number jVrj of
non-sink vertices in the kernel condensation in the last col-
umn, which will be used later to assess the quality of dif-
ferent reduction techniques.

TABLE 3
Percentage (%) for Vertex (jV j) and Edge (jEj) Counts of the Compressed Graphs to the Corresponding Core Graphs

Graphs
jVSj
jV cj

jESj
jEcj

jVS�Dj
jV cj

jES�Dj
jEcj

jVS�Mi
j

jV cj
jES�Mi

j
jEcj

jVS�Mc
j

jV c j
jES�Mc

j
jEcj

jVrj
jV cj

jErj
jEc j

jVfp j
jV cj

jEfp j
jEcj

jVter j
jV cj

jEter j
jEc j

avrora-s 94.15 93.70 6.41 39.10 61.94 53.83 7.47 25.56 4.17 21.44 4.40 21.75 73.01 59.32
batik-s 94.64 94.01 6.91 39.74 61.92 53.82 7.96 26.40 4.32 21.79 4.56 22.09 73.59 59.63
eclipse-s 93.92 93.32 6.81 39.56 61.50 53.30 7.96 25.92 4.22 21.41 4.44 21.66 72.81 58.61
fop-s 94.04 93.67 6.15 39.86 60.75 53.60 7.17 26.42 3.98 22.54 4.16 22.78 71.55 58.89
h2-s 93.30 92.75 6.54 38.45 59.70 51.62 7.67 25.21 4.00 20.67 4.24 20.97 70.92 57.22
jenkins-s 93.68 93.17 4.91 37.16 55.95 48.83 5.71 22.93 2.97 19.13 3.11 19.31 66.80 53.53
jython-s 94.64 94.08 5.65 36.36 57.08 50.41 6.61 23.88 3.50 19.87 3.69 20.10 67.73 55.86
luindex-s 93.51 92.93 6.57 39.47 62.17 53.53 7.64 25.45 4.18 21.23 4.39 21.47 72.99 58.82
lusearch-s 93.50 92.92 6.56 39.49 62.17 53.52 7.63 25.44 4.18 21.24 4.39 21.48 72.98 58.81
openjdk8-s 95.09 94.61 5.33 38.30 58.26 49.73 6.27 22.94 3.21 19.00 3.37 19.20 68.24 53.86
pmd-s 93.86 93.36 6.52 38.96 61.40 53.40 7.58 25.52 4.15 21.28 4.39 21.58 72.59 58.94
sunflow-s 94.41 93.92 6.69 39.38 61.66 53.60 7.76 25.75 4.28 21.48 4.53 21.78 72.80 59.08
tomcat-s 93.76 93.17 6.69 39.47 61.67 53.29 7.78 25.56 4.21 21.24 4.44 21.50 72.87 58.76
tradebean-s 93.99 93.36 6.80 39.62 62.12 53.54 7.85 25.48 4.26 21.06 4.49 21.33 73.23 59.00
xalan-s 94.34 93.86 5.64 38.84 60.25 50.67 6.54 22.82 3.51 19.02 3.71 19.26 70.00 55.56
avrora-l 87.54 66.31 12.76 34.91 50.82 19.99 11.75 15.77 2.66 6.28 3.07 6.88 66.29 21.90
batik-l 87.15 64.90 13.86 35.58 49.88 20.00 12.81 16.71 2.69 6.35 3.13 7.03 65.46 21.10
eclipse-l 87.11 69.13 13.66 37.88 51.00 22.08 12.68 17.93 2.88 7.13 3.34 7.77 66.15 25.83
fop-l 86.87 62.92 13.07 34.42 49.72 19.13 12.14 16.10 2.56 6.38 2.98 6.96 64.89 20.24
h2-l 86.64 66.09 13.34 34.58 48.97 19.78 12.37 16.32 2.60 6.34 3.03 6.93 64.34 21.63
jenkins-l 85.12 50.55 11.11 31.39 46.27 6.89 10.00 6.77 1.95 1.81 2.25 2.11 60.63 5.45
jython-l 74.80 10.56 10.56 5.84 40.68 2.47 9.55 2.17 1.95 0.76 2.25 0.84 53.32 2.72
luindex-l 87.45 70.72 14.18 39.31 51.55 22.32 13.16 18.84 2.92 7.28 3.40 7.98 66.72 26.56
lusearch-l 87.46 70.74 14.19 39.32 51.56 22.33 13.17 18.86 2.92 7.28 3.40 7.98 66.74 26.59
openjdk8-l 87.51 56.15 12.06 30.81 48.23 13.04 11.47 11.56 2.13 3.90 2.47 4.38 63.08 13.11
pmd-l 85.83 63.63 13.31 34.81 49.50 18.12 12.09 15.03 2.65 5.80 3.06 6.34 64.57 19.84
sunflow-l 87.04 65.68 13.28 35.32 50.07 20.43 12.20 16.74 2.73 6.57 3.16 7.18 65.20 22.37
tomcat-l 86.68 67.35 13.51 36.97 51.34 21.89 12.04 16.74 2.88 7.10 3.33 7.69 66.08 24.20
tradebean-l 87.37 70.46 14.17 38.79 51.68 22.89 13.11 18.60 2.97 7.26 3.45 7.94 66.69 27.23
xalan-l 87.66 66.83 12.38 34.90 50.19 20.95 11.33 16.71 2.41 6.45 2.81 7.06 64.20 22.56
LiveJournal1-8 100.00 100.00 2.39 30.59 5.14 18.49 3.12 15.95 2.02 15.13 2.02 15.13 7.16 18.68
soc-Pokec-8 100.00 100.00 3.35 33.36 6.09 21.29 4.68 18.31 2.51 16.73 2.52 16.74 8.25 20.46
web-BerkStan-8 100.00 100.00 2.42 2.99 6.54 3.10 25.97 7.33 0.26 0.54 0.26 0.54 11.77 3.14
web-Google-8 100.00 100.00 3.34 21.96 15.36 25.93 16.55 19.88 2.26 9.13 2.27 9.15 25.31 25.70

jVrj and jErj represent the size of the kernel condensation. jVfpj and jEfpj represent the size of the fixpoint condensation by fS;D;Mi;Mcg. jVterj and jEterj repre-
sent the size of the graph obtained by the techniques in [1]. Note that for the vertex count, only non-sink vertices are taken into account.

4. http://snap.stanford.edu/data/index.html.
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5.1 Experimental Results

Eval-I: Effectiveness of Individual Condensation Operators. In
the first experiment, we assess how effective each conden-
sation operator is for reducing the sink graphs; note that,
here (and also in the remainder of this section) we actually
consider core graphs. We measure the percentage of the
resulting size, obtained by the condensation operators, of
the sink graph with respect to the size of the core graph.
The results are shown in columns 2 – 9 of Table 3, e.g., col-
umns 2 – 3 show

jVSj
jV cj � 100 and

jESj
jEcj � 100 for operator S.

Note that, we use the sequences S � D, S �Mi, and S �Mc

for the operators D, Mi, and Mc, respectively, as they
assume acyclic input sink graph. From Table 3, we can see
that cycle removal (i.e., operator S) has almost no effect for
sparse graphs (i.e., named -s), yields only small gains for
the denser graphs (i.e., named -d), and has no effect for the
other four graphs that are acyclic. Operators D and Mc are
the most effective: they result in the smallest reduced
graph in most cases. Operator Mi is the middle ground: it
achieves a reasonable reduction, but performs worse than
D and Mc. It can also be observed that operators D, Mi, and
Mc complement each other: they have different reduction
effectiveness.

Eval-II: Effectiveness of Composed Condensations. In this
experiment, we evaluate the effectiveness of our compo-
sitional approach to sink-reachability preserving reduc-
tion by comparing our fixpoint condensation (i.e.,
maximal condensation sequences over fS;D;Mi;Mcg)

with the kernel condensation Gr. In addition, we also
include the comparison with the state-of-the-art reach-
ability preserving reduction techniques proposed in [1];
note that, the reduction techniques in [1] preserve all
reachability information, and thus also the sink-reach-
ability information. The results are shown in the last six
columns of Table 3. We can see that our fixpoint conden-
sation obtains a reduction that is very close to the kernel
condensation, although in many cases it is slightly larger
than the kernel condensation which conforms our analy-
sis in Section 4.2.2. On the other hand, the compressed
graph obtained by the techniques in [1] is much larger
than our fixpoint condensation. This demonstrates the
effectiveness of our compositional approach for sink-
reachability preserving compression.

Eval-III: Lengths of Reduction Sequences S � C	. Now, we
measure the lengths of the six reduction sequences of the
form S � C	 on the sink graphs; here C is the composition of
a permutation of the three condensation operators D;Mi;Mc.
Recall from Section 4.2.3 that a reduction sequence is a max-
imal condensation sequence, and the shorter the reduction
sequence, the better the running time. The results are shown
in columns 3 – 8 of Table 4, where the shortest ones among
these six reduction sequences are highlighted by bold font.
We can see that the permutation C � D �Mi �Mc (column 3
in Table 4) results in a no longer length than all other five
permutations across all the tested sink graphs, except on
luindex-d and lusearch-d.

TABLE 4
Lengths of Compression Sequences (Copt is the Shortest Compression Sequence, CðDMiMcÞ	 is the Compression Sequence S � ðD �
Mi �McÞ	, CDðMiMcÞ	 is the Compression Sequence S � D � ðMi �McÞ	, and CðMiMcÞ	 is the Compression Sequence S � ðMi �McÞ	)

Graphs jCoptj jCðDMiMcÞ	 j jCðDMcMiÞ	 j jCðMiDMcÞ	 j jCðMiMcDÞ	 j jCðMcDMiÞ	 j jCðMcMiDÞ	 j jCDðMiMcÞ	 j jCðMiMcÞ	 j
avrora-s 11 16 19 16 16 19 19 13 13
batik-s 12 16 19 16 16 19 19 13 13
eclipse-s 11 16 19 16 16 19 19 13 13
fop-s 10 16 19 16 16 19 19 13 13
h2-s 10 13 16 13 16 16 16 11 13
jenkins-s 12 16 16 16 19 19 19 11 13
jython-s 9 13 13 13 16 16 16 9 13
luindex-s 10 16 19 16 16 19 19 13 13
lusearch-s 10 16 19 16 16 19 19 13 13
openjdk8-s 9 13 13 13 16 16 16 9 13
pmd-s 11 16 19 16 16 19 19 13 13
sunflow-s 11 16 19 16 16 19 19 13 13
tomcat-s 11 16 19 16 16 19 19 13 13
tradebean-s 11 16 19 16 16 19 19 13 13
xalan-s 11 16 19 16 16 19 19 13 13
avrora-l 12 16 16 16 19 19 19 15 15
batik-l 13 19 19 19 19 19 19 15 17
eclipse-l 12 13 16 13 16 16 16 11 15
fop-l 13 16 19 16 19 19 19 15 17
h2-l 13 16 16 16 16 16 16 15 15
jenkins-l 13 19 19 19 19 19 19 13 19
jython-l 13 16 19 16 19 19 19 15 15
luindex-l 11 16 13 16 16 16 16 11 15
lusearch-l 11 16 13 16 16 16 16 11 15
openjdk8-l 15 22 22 22 22 22 22 15 19
pmd-l 12 16 16 16 16 16 16 15 15
sunflow-l 13 16 16 16 19 16 16 15 15
tomcat-l 11 13 16 13 16 16 16 11 15
tradebean-l 12 13 16 13 16 16 16 11 13
xalan-l 12 16 16 16 19 16 16 15 15
LiveJournal1-8 6 13 13 13 13 13 13 9 9
soc-Pokec-8 6 7 10 7 7 10 10 5 7
web-BerkStan-8 7 7 10 10 10 10 10 5 11
web-Google-8 7 13 13 13 16 16 16 9 11
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In addition, to illustrate how good are these reduction
sequences in terms of length, we also show in column 2 of
Table 4 the length of the shortest reduction sequence over
fS;D;Mi;Mcg for each sink graph. Note that, the shortest
reduction sequence is obtained by doing a pruned complete
search over all possible reduction sequences, which may
take an exponential time to be found in the worst case and
thus is not a good candidate reduction sequence to be used
in practice. We can see that the length of the reduction
sequence S � ðD �Mi �McÞ	 is at most 60 percent longer than
the shortest reduction sequence, except on LiveJournal1-8
which is 116 percent longer. Moreover, the lengths of all six
reduction sequences of the form S � C	 are within 3x the
length of the shortest compression sequence; this conforms
our theoretical analysis in Section 4.2.3.

Eval-IV: Reduction Sequence to Use in Practice. Following
from Eval-III, if we want a reduction sequence that will
result in short length in practice as well as in the worst-case
scenarios, then we recommend to use S � ðD �Mi �McÞ	.
However, if we only care about practical performance, then
we actually can drop the condensation operator D. This is
because, for any sink graph G, the equivalence relation of D
on G is a subset of the equivalence relation of ðMcÞ	 on G;
we omit the proof from the paper. That is, for any sink
graph G, we have S � ðD �Mi �McÞ	ðGÞ ¼ S � ðMi �McÞ	ðGÞ.
Nevertheless, we observe that if we apply the condensation

operator D once at the beginning, usually we will have a
shorter reduction sequence. The lengths of the reduction
sequences S � D � ðMi �McÞ and S � ðMi �McÞ on the tested
sink graphs are shown in the last two columns of Table 4.
We can see that the length of the reduction sequence S � D �
ðMi �McÞ is always no larger than and usually is smaller
than all other reduction sequences in Table 4. Thus, we rec-
ommend to use the reduction sequence S � D � ðMi �McÞ in
practice; we also use this as our fixpoint reduction sequence
in the remaining experiments. It is worth pointing out that
unlike the reduction sequence S � ðD �Mi �McÞ	, the length
of S � D � ðMi �McÞ	 cannot be bounded by and in the worst
case can be much larger than 3x the length of the shortest
reduction sequence over fS;D;Mi;Mcg.

Eval-V: Sink Reachability Index Construction and Query
Processing. In this experiment, we evaluate the effect of
graph reduction for sink reachability index construction
and query processing. As mentioned in Section 1, we can
utilize the existing 2-hop indexing technique [36] to effi-
ciently process queries that check whether rGðuÞ \ rGðvÞ is
empty. That is, we can either directly construct the index by
concatenating Gc with its reverse graph G

 c
, or first reduce it

into Gfp by our fixpoint reduction and then construct the
index by concatenating Gfp with its reverse graph G

 
fp; note

that, we can also first reduce it into Gter by using the techni-
ques in [1] and then construct the index by concatenating

TABLE 5
Size, Construction Time, and Query Time (in milliseconds) of 2-Hop Indexes on Gc, on the Graph Gfp Obtained by Our Fixpoint

Compression, and on the Graph Gter Obtained by the Compression Technique in [1]

Index on Gc Index on Gfp Index on Gter

Graph Size Construction Time Query Time Size Construction Time Query Time Size Construction Time Query Time

avrora-s 654296 3209 19 302515 2950 3 519361 3389 16
batik-s 827578 3973 23 382063 3615 3 656467 4485 19
eclipse-s 379821 1591 12 173130 1547 1 296213 1637 9
fop-s 922000 4539 26 446893 4147 4 735426 5001 21
h2-s 718434 3399 20 306507 2992 3 547584 3544 16
jenkins-s 3287452 24851 107 1493020 22122 18 2450823 26793 81
jython-s 885707 5310 27 386727 4595 4 672469 5440 21
luindex-s 353750 1543 11 160980 1500 1 278685 1525 8
lusearch-s 353031 1620 11 160991 1501 1 278260 1555 9
openjdk8-s 1594631 10642 52 703867 9162 9 1181854 11312 42
pmd-s 667741 3192 19 300372 2960 3 528636 3325 16
sunflow-s 627732 2877 18 285669 2702 3 496825 3030 15
tomcat-s 351841 1506 11 158171 1417 1 276133 1504 9
tradebean-s 313248 1332 10 140248 1245 1 246105 1297 8
xalan-s 736309 3925 24 333058 3626 4 566122 4110 19
avrora-l 2259006 6893 33 379476 5467 3 1274178 6637 34
batik-l 2851914 8458 43 436597 6833 4 1556867 8247 38
eclipse-l 1707429 3209 19 222169 2499 1 1011163 3025 17
fop-l 3366294 10172 42 520894 8111 5 1829424 9928 43
h2-l 2472182 7164 34 383598 5518 3 1366696 6714 31
jenkins-l 20022159 168382 181 1612649 144179 19 6733811 158756 177
jython-l 3477781 65458 44 465887 62039 4 1683750 63601 40
luindex-l 1874032 3199 17 216792 2518 1 1135982 2973 15
lusearch-l 1878680 3142 17 216911 2523 1 1138942 2970 15
openjdk8-l 8499383 32312 87 881799 26299 10 3593158 30702 73
pmd-l 2404183 7071 32 378025 5594 3 1360305 6778 33
sunflow-l 2231046 5962 30 350367 4712 3 1241859 5749 28
tomcat-l 1209228 2922 16 197365 2299 1 695283 2741 15
tradebean-l 1486614 2545 15 179476 1991 1 880781 2402 15
xalan-l 2646944 7818 36 413414 6140 4 1419177 7796 34
LiveJournal1-8 117878 63870 28 85072 42587 3 85222 43398 13
soc-Pokec-8 49970 8251 9 29870 6068 1 30510 6203 1
web-BerkStan-8 1062014 706 6 3091 499 1 27904 516 1
web-Google-8 282703 3986 14 27155 2612 1 73258 2663 8

The reported construction time includes both graph compression time and index construction time.
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Gter with its reverse graph G
 

ter. The index size, construction
time and query time of the three different approaches are
shown in Table 5. We can see that the construction time of the
three approaches are comparable to each other; note that, the
reported time also includes the time for reduction. Thus, reduc-
tion first does not incur significant overhead due to the reduc-
tion operations. When comparing the index sizes, we can see
that constructing indexes on Gter reduces the index sizes than
directly on Gc; this is because reduction reduces the graph
sizes. Constructing indexes on Gfp further reduces the index
sizes; this is because our reduction technique results in a
smaller reduced graph than the techniques in [1]. As the 2-hop
index-based query processing time is linear to the index size,
query processing onGfp is much faster than that onGc and on
Gter. As index size usually is the main bottleneck for in-mem-
ory reachability query processing [1], it is expected that reduc-
ing graphs by our fixpoint reduction technique can scale
reachability indexing and query processing to much larger
graphs. It is worth mentioning that the transitive reduction
technique proposed in [1] is orthogonal to our techniques and
can potentially be used together with our techniques to further
improve the reduction ratio.

Eval-VI: Varying Percentage of Sink Vertices. We also evaluate
the effectiveness of reduction techniques by varying the per-
centage of sink vertices on the sink graph web-BerkStan.
Fig. 10a shows the reduction effectiveness, i.e., jVrjjV cj � 100, jVterjjV cj �
100 and

jVfpj
jV cj � 100. We can see that the techniques in [1] are not

affected by the number of sink vertices, as they do not distin-
guish sink vertices and non-sink vertices. When the number of
sink vertices increases, the reduction becomes less effective
(i.e., has a larger jVrjjV cj). Nevertheless, the reduction obtained by
our fixpoint reduction is always very close to the kernel con-
densation. Fig. 10b shows the index size by building 2-hop
index on the corresponding graphs. As expected, the index
sizes for Gc and Gter almost are not affected by the number of
sink vertices. The index size for Gfp increases along with the
number of sink vertices due to the less effectiveness of the
reduction (see Fig. 10a). Nevertheless, the index size for Gfp is
much smaller than that forGter andGc.

6 CONCLUSION

We have introduced a novel approach to compute reachability
in sink graphs. Our approach uses reachability-preserving con-
densation operators that can be computed in linear time. We
demonstrated that the linear reduction algorithms can be com-
posed (chained), and that these composition sequences reach a
unique fixpoint, representing the best possible reachability-pre-
serving reduction that can be reached with this technique.
Experiments on data sets sourced from different application

areas show that our technique is effective in reducing graphs,
outperforming existing state-of-the-art techniques developed
for general directed graphs. Relatively short sequences yield
tight approximations of the best possible reduction defined by
the reachability kernel.
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